Skip to main content
Mathematics LibreTexts

6.3E: Exercises

  • Page ID
    120175
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Exercises

    In Exercises 1 - 33, solve the equation analytically.

    1. \(2^{4x} = 8\)
    2. \(3^{(x - 1)} = 27\)
    3. \(5^{2x-1} = 125\)
    4. \(4^{2x} = \frac{1}{2}\)
    5. \(8^{x} = \frac{1}{128}\)
    6. \(2^{(x^{3} - x)} = 1\)
    7. \(3^{7x} = 81^{4-2x}\)
    8. \(9 \cdot 3^{7x} = \left(\frac{1}{9}\right)^{2x}\)
    9. \(3^{2x} = 5\)
    10. \(5^{-x} = 2\)
    11. \(5^{x} = -2\)
    12. \(3^{(x - 1)} = 29\)
    13. \((1.005)^{12x} = 3\)
    14. \(e^{-5730k} = \frac{1}{2}\)
    15. \(2000e^{0.1t} = 4000\)
    16. \(500\left(1-e^{2x}\right) = 250\)
    17. \(70 + 90e^{-0.1t} = 75\)
    18. \(30-6e^{-0.1x}=20\)
    19. \(\dfrac{100e^{x}}{e^{x}+2}=50\)
    20. \(\dfrac{5000}{1+2e^{-3t}}=2500\)
    21. \(\dfrac{150}{1 + 29e^{-0.8t}} = 75\)
    22. \(25\left(\frac{4}{5}\right)^{x} = 10\)
    23. \(e^{2x} = 2e^{x}\)
    24. \(7e^{2x} = 28e^{-6x}\)
    25. \(3^{(x - 1)} = 2^{x}\)
    26. \(3^{(x - 1)} = \left(\frac{1}{2}\right)^{(x + 5)}\)
    27. \(7^{3+7x} = 3^{4-2x}\)
    28. \(e^{2x} - 3e^{x}-10=0\)
    29. \(e^{2x} = e^{x}+6\)
    30. \(4^{x} + 2^{x} = 12\)
    31. \(e^{x}-3e^{-x}=2\)
    32. \(e^{x}+15e^{-x}=8\)
    33. \(3^{x}+25\cdot3^{-x}=10\)

    In Exercises 34 - 39, solve the inequality analytically.

    1. \(e^{x} > 53\)
    2. \(1000\left(1.005\right)^{12t} \geq 3000\)
    3. \(2^{(x^{3} - x)} < 1\)
    4. \(25\left(\frac{4}{5}\right)^{x} \geq 10\)
    5. \(\dfrac{150}{1 + 29e^{-0.8t}} \leq 130\)
    6. \(\vphantom{\dfrac{150}{1 + 29e^{-0.8t}}} 70 + 90e^{-0.1t} \leq 75\)

    In Exercises 40 - 45, use your calculator to help you solve the equation or inequality.

    1. \(2^{x} = x^2\)
    2. \(e^{x} = \ln(x) + 5\)
    3. \(e^{\sqrt{x}} = x + 1\)
    4. \(e^{-x} - xe^{-x} \geq 0\)
    5. \(3^{(x - 1)} < 2^{x}\)
    6. \(e^{x} < x^{3} - x\)
    7. Since \(f(x) = \ln(x)\) is a strictly increasing function, if \(0 < a < b\) then \(\ln(a) < \ln(b)\). Use this fact to solve the inequality \(e^{(3x - 1)} > 6\) without a sign diagram. Use this technique to solve the inequalities in Exercises 34 - 39. (NOTE: Isolate the exponential function first!)
    8. Compute the inverse of \(f(x) = \dfrac{e^{x} - e^{-x}}{2}\). State the domain and range of both \(f\) and \(f^{-1}\).
    9. In Example 6.3.4, we found that the inverse of \(f(x) = \dfrac{5e^{x}}{e^{x}+1}\) was \(f^{-1}(x) = \ln\left(\dfrac{x}{5-x}\right)\) but we left a few loose ends for you to tie up.
      1. Show that \(\left(f^{-1} \circ f\right)(x) = x\) for all \(x\) in the domain of \(f\) and that \(\left(f \circ f^{-1}\right)(x) = x\) for all \(x\) in the domain of \(f^{-1}\).
      2. Find the range of \(f\) by finding the domain of \(f^{-1}\).
      3. Let \(g(x) = \dfrac{5x}{x+1}\) and \(h(x) = e^{x}\). Show that \(f = g \circ h\) and that \((g \circ h)^{-1} = h^{-1} \circ g^{-1}\). (We know this is true in general by Exercise 31 in Section 5.2, but it’s nice to see a specific example of the property.)
    10. With the help of your classmates, solve the inequality \(e^{x} > x^{n}\) for a variety of natural numbers \(n\). What might you conjecture about the “speed” at which \(f(x) = e^{x}\) grows versus any polynomial?

    Answers

    1. \(x = \frac{3}{4}\)
    2. \(x = 4\)
    3. \(x=2\)
    4. \(x = -\frac{1}{4}\)
    5. \(x = -\frac{7}{3}\)
    6. \(x = -1, \, 0, \, 1\)
    7. \(x = \frac{16}{15}\)
    8. \(x=-\frac{2}{11}\)
    9. \(x = \frac{\ln(5)}{2\ln(3)}\)
    10. \(x = -\frac{\ln(2)}{\ln(5)}\)
    11. No solution.
    12. \(x = \frac{\ln(29) + \ln(3)}{\ln(3)}\)
    13. \(x = \frac{\ln(3)}{12\ln(1.005)}\)
    14. \(k = \frac{\ln\left(\frac{1}{2}\right)}{-5730} = \frac{\ln(2)}{5730}\)
    15. \(t=\frac{\ln(2)}{0.1} = 10\ln(2)\)
    16. \(x=\frac{1}{2}\ln\left(\frac{1}{2}\right) = -\frac{1}{2}\ln(2)\)
    17. \(t = \frac{\ln\left(\frac{1}{18}\right)}{-0.1} =10 \ln(18)\)
    18. \(x=-10\ln\left(\frac{5}{3}\right) = 10\ln\left(\frac{3}{5}\right)\)
    19. \(x=\ln(2)\)
    20. \(t=\frac{1}{3}\ln(2)\)
    21. \(t = \frac{\ln\left(\frac{1}{29}\right)}{-0.8} = \frac{5}{4}\ln(29)\)
    22. \(x = \frac{\ln\left(\frac{2}{5}\right)}{\ln\left(\frac{4}{5}\right)} = \frac{\ln(2)-\ln(5)}{\ln(4) - \ln(5)}\)
    23. \(x = \ln(2)\)
    24. \(x = -\frac{1}{8} \ln\left(\frac{1}{4} \right) = \frac{1}{4}\ln(2)\)
    25. \(x = \frac{\ln(3)}{\ln(3) - \ln(2)}\)
    26. \(x = \frac{\ln(3) + 5\ln\left(\frac{1}{2}\right)}{\ln(3) - \ln\left(\frac{1}{2}\right)} = \frac{\ln(3)-5\ln(2)}{\ln(3)+\ln(2)}\)
    27. \(x = \frac{4 \ln(3) - 3 \ln(7)}{7 \ln(7) + 2 \ln(3)}\)
    28. \(x=\ln(5)\)
    29. \(x=\ln(3)\)
    30. \(x=\frac{\ln(3)}{\ln(2)}\)
    31. \(x=\ln(3)\)
    32. \(x=\ln(3)\), \(\ln(5)\)
    33. \(x=\frac{\ln(5)}{\ln(3)}\)
    34. \((\ln(53), \infty)\)
    35. \(\left[\frac{\ln(3)}{12\ln(1.005)}, \infty\right)\)
    36. \((-\infty, -1) \cup (0, 1)\)
    37. \(\left(-\infty, \frac{\ln\left(\frac{2}{5}\right)}{\ln\left(\frac{4}{5}\right)} \right] = \left(-\infty, \frac{\ln(2)-\ln(5)}{\ln(4)-\ln(5)} \right]\)
    38. \(\left(-\infty, \frac{\ln\left(\frac{2}{377}\right)}{-0.8} \right] = \left(-\infty, \frac{5}{4}\ln\left(\frac{377}{2}\right) \right]\)
    39. \(\left[\frac{\ln\left(\frac{1}{18}\right)}{-0.1}, \infty\right) = [10\ln(18), \infty)\)
    40. \(x \approx -0.76666, \, x = 2, \, x = 4\)
    41. \(x \approx 0.01866, \, x \approx 1.7115\)
    42. \(x = 0\)
    43. \((-\infty, 1]\)
    44. \(\approx (-\infty, 2.7095)\)
    45. \(\approx (2.3217, 4.3717)\)
    46. \(x > \frac{1}{3}(\ln(6) + 1)\)
    47. \(f^{-1} = \ln\left(x + \sqrt{x^{2} + 1}\right)\). Both \(f\) and \(f^{-1}\) have domain \((-\infty, \infty)\) and range \((-\infty, \infty)\).

    6.3E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?