Skip to main content
Mathematics LibreTexts

3.1: The Trigonometric Functions - Right Triangle Definition

  • Page ID
    145906
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Suggested Prerequisite Topics

    This section is designed assuming you understand the following topics from Algebra.

    • Solve formulas for specific variables
    Learning Objectives
    • Find the value of a trigonometric function of an unknown angle in a right triangle given at least two sides of the triangle.
    • Compute the values of the remaining trigonometric functions of an unknown angle within a right triangle given one trigonometric ratio.
    • Use the Ratio, Reciprocal, and Pythagorean Identities, along with Right Triangle Trigonometry, to compute trigonometric values.
    • Find the exact value of a trigonometric function for a special angle.
    • Use the Cofunction Identities to find the value of a trigonometric function.
    • Use exact values to simplify an expression involving trigonometric functions.
    • Recognize and understand the constraints on the values of certain trigonometric functions.

    Introduction to Right Triangle Trigonometry

    Our initial foray into Trigonometry involved defining the trigonometric functions in terms of points on the Cartesian plane and the distances from those points to the origin. In this chapter, we focus on Trigonometry outside of a coordinate system. Specifically, we redefine the trigonometric functions in terms of ratios of sides of a right triangle.

    Definition: Trigonometric Functions (Right Triangle Definition)

    If \(\theta\) is one of the angles in a right triangle, where the side opposite \( \theta \) is called "opposite," the side adjacent to \( \theta \) is called "adjacent," and the hypotenuse is named as such, we define the trigonometric functions of \( \theta \) as follows:\[ \begin{array}{|ccc|ccc|}
    \hline
    \text{Function} & & \text{Ratio} & \text{Function} & & \text{Ratio} \\
    \hline
    \sin\left( \theta \right) & = & \dfrac{\text{opposite}}{\text{hypotenuse}} & \csc\left( \theta \right) & = & \dfrac{\text{hypotenuse}}{\text{opposite}} \\
    \cos\left( \theta \right) & = & \dfrac{\text{adjacent}}{\text{hypotenuse}} & \sec\left( \theta \right) & = & \dfrac{\text{hypotenuse}}{\text{adjacent}} \\
    \tan\left( \theta \right) & = & \dfrac{\text{opposite}}{\text{adjacent}} & \cot\left( \theta \right) & = & \dfrac{\text{adjacent}}{\text{opposite}} \\
    \hline \end{array} \nonumber \]

    Screen Shot 2022-09-13 at 2.57.34 PM.png

    While this definition looks different than our coordinate definition of the trigonometric functions, it is, in fact, the same definition if we restrict the coordinates in our original definition to the first quadrant. While it might seem limiting for us to create a new definition of the trigonometric functions by restricting our original definition, this new definition serves a greater purpose - it simplifies Trigonometry immensely. It allows us to separate the triangle from the Cartesian coordinate system.

    Example \( \PageIndex{ 1 } \)

    Find all trigonometric ratios of the labeled angle in each triangle.

    1. Screen Shot 2022-09-13 at 1.39.25 PM.png
    2. Screen Shot 2022-09-13 at 1.39.38 PM.png
    Solutions
    1. The side opposite angle \(\phi\) is 5 and the hypotenuse is 13. Let \( x \) be the length of the side adjacent to \( \phi \). To find \( x \), we invoke the Pythagorean Theorem.\[ \begin{array}{rrclcr}
      & x^2 + 5^2 & = & 13^2 & \quad & (\text{Pythagorean Theorem}) \\
      \implies & x^2 + 25 & = & 169 & \quad & (\text{Square the terms}) \\
      \implies & x^2 & = & 144 & \quad & (\text{Subtract 25 from both sides}) \\
      \implies & x & = & \pm 12 & \quad & (\text{Extraction of Roots}) \\
      \implies & x & = & 12 & \quad & (x\text{ must be positive - it's a side length}) \\
      \end{array} \nonumber \]Therefore,\[ \begin{array}{rccclcrcccl}
      \sin\left( \phi \right) & = & \dfrac{\text{opposite}}{\text{hypotenuse}} & = & \dfrac{5}{13} & \qquad & \csc\left( \phi \right) & = & \dfrac{\text{hypotenuse}}{\text{opposite}} & = & \dfrac{13}{5} \\
      \cos\left( \phi \right) & = & \dfrac{\text{adjacent}}{\text{hypotenuse}} & = & \dfrac{12}{13} & \qquad & \sec\left( \phi \right) & = & \dfrac{\text{hypotenuse}}{\text{adjacent}} & = & \dfrac{13}{12} \\
      \tan\left( \phi \right) & = & \dfrac{\text{opposite}}{\text{adjacent}} & = & \dfrac{5}{12} & \qquad & \cot\left( \phi \right) & = & \dfrac{\text{adjacent}}{\text{opposite}} & = & \dfrac{12}{5} \\
      \end{array} \nonumber \]
    2. The side opposite angle \(\beta\) is \(\sqrt{5}\) and the hypotenuse is 3. Labeling the side adjacent to \( \beta \) as \( x \), we get\[ \begin{array}{rrclcr}
      & x^2 + \left(\sqrt{5}\right)^2 & = & 3^2 & \quad & (\text{Pythagorean Theorem}) \\
      \implies & x^2 + 5 & = & 9 & \quad & (\text{Square the terms}) \\
      \implies & x^2 & = & 4 & \quad & (\text{Subtract 25 from both sides}) \\
      \implies & x & = & 2 & \quad & (\text{Extraction of the principle root}) \\
      \end{array} \nonumber \]Therefore,\[ \begin{array}{rccclcrcccl}
      \sin\left( \beta \right) & = & \dfrac{\text{opposite}}{\text{hypotenuse}} & = & \dfrac{\sqrt{5}}{3} & \qquad & \csc\left( \beta \right) & = & \dfrac{\text{hypotenuse}}{\text{opposite}} & = & \dfrac{\sqrt{3}}{\sqrt{5}} \\
      \cos\left( \beta \right) & = & \dfrac{\text{adjacent}}{\text{hypotenuse}} & = & \dfrac{2}{3} & \qquad & \sec\left( \beta \right) & = & \dfrac{\text{hypotenuse}}{\text{adjacent}} & = & \dfrac{3}{2} \\
      \tan\left( \beta \right) & = & \dfrac{\text{opposite}}{\text{adjacent}} & = & \dfrac{\sqrt{5}}{2} & \qquad & \cot\left( \phi \right) & = & \dfrac{\text{adjacent}}{\text{opposite}} & = & \dfrac{2}{\sqrt{5}} \\
      \end{array} \nonumber \]
    Checkpoint \( \PageIndex{ 1 } \)

    Find the sine of the labeled angle in the triangle below. Round the answer to 4 decimal places.

    Screen Shot 2022-09-13 at 1.42.09 PM.png

    Answer

    \(\sin\left(\alpha\right) \approx 0.7442\)

    The result of the computation to find the missing side in Example \( \PageIndex{ 1 } \) part (a) reveals one of the Pythagorean triples, \((5,12,13)\). A Pythagorean triple consists of three positive integers \(a\), \(b\), and \(c\), such that \(a^2 + b^2 = c^2\). A right triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and any triangle with sides that are Pythagorean triples must be a right triangle. There are an infinite number of Pythagorean triples, but the common ones found in Trigonometry textbooks are \( (3,4,5) \), \( (5, 12, 13) \), and \( (7, 24, 25) \). For more information, see this Wikipedia page.

    The following example illustrates a necessary skill for us as we move forward in Trigonometry.

    Example \(\PageIndex{2}\)

    Write algebraic expressions for the six trigonometric ratios of the angle \( \theta \) if the hypotenuse has length 2 and the side adjacent to \( \theta \) has length \( D \).

    Solution
    We begin by finding the missing side, which we shall call \( x \).\[\begin{array}{rrclcr}
    & D^2 + x^2 & = & 2^2 & \quad & (\text{Pythagorean Theorem}) \\
    \implies & D^2 + x^2 & = & 4 & \quad & \\
    \implies & x^2 & = & 4 - D^2 & \quad & \\
    \implies & x & = & \sqrt{4 - D^2} & \quad & \\
    \end{array} \nonumber \]We can now fill in the values of the trigonometric ratios.\[ \begin{array}{rcccccrcccc}
    \sin\left(\theta\right) & = & \dfrac{\text { opposite }}{\text { hypotenuse }} & = & \dfrac{\sqrt{4-D^2}}{2} & \qquad & \csc \left(\theta\right) & = & \dfrac{\text { hypotenuse }}{\text { opposite }} & = & \dfrac{2}{\sqrt{4 - D^2}} \\
    \cos\left(\theta\right) & = & \dfrac{\text { adjacent }}{\text { hypotenuse }} & = & \dfrac{D}{2} & \qquad & \sec \left(\theta\right) & = & \dfrac{\text { hypotenuse }}{\text { adjacent }} & = & \dfrac{2}{D} \\
    \tan\left(\theta\right) & = & \dfrac{\text { opposite }}{\text { adjacent }} & = & \dfrac{\sqrt{4 - D^2}}{D} & \qquad & \cot \left(\theta\right) & = & \dfrac{\text { adjacent }}{\text { opposite }} & = & \dfrac{D}{\sqrt{4 - D^2}} \\
    \end{array} \nonumber \]
    Checkpoint \(\PageIndex{2}\)

    If the hypotenuse of a right triangle is \( h \) and the side opposite \( \theta \) is \( L \), write expressions in \( h \) and \( L \) for all six trigonometric functions of \( \theta \).

    Answer

    \[ \begin{array}{rcccrcc}
    \sin\left(\theta\right) & = & \dfrac{L}{h} & \qquad & \csc \left(\theta\right) & = & \dfrac{h}{L} \\
    \cos\left(\theta\right) & = & \dfrac{\sqrt{h^2 - L^2}}{h} & \qquad & \sec \left(\theta\right) & = & \dfrac{h}{\sqrt{h^2 - L^2}} \\
    \tan\left(\theta\right) & = & \dfrac{L}{\sqrt{h^2 - L^2}} & \qquad & \cot \left(\theta\right) & = & \dfrac{\sqrt{h^2 - L^2}}{h} \\
    \end{array} \nonumber \]

    Caution: Right Triangle Trigonometry Works For... Right Triangles

    To calculate the trigonometric function of an angle within a triangle, it is crucial that the triangle be a right triangle. For example, in the triangle below, \(\sin \left(\alpha\right)= \frac{4}{7}\), because \(\triangle A B C\) is a right triangle. It is not true that \(\sin \left(\alpha\right)=\frac{5}{7}\), or \(\sin\left( \alpha\right)=\frac{6}{7}\).

    Screen Shot 2022-09-13 at 1.44.20 PM.png

    Revisiting the Fundamental Identities

    Our previous identities (the Ratio, Reciprocal, and Pythagorean Identities) still hold when using the right triangle definition of the trigonometric functions. For example, notice that\[ \sin\left( \theta \right) = \dfrac{\text{opposite}}{\text{hypotenuse}} = \dfrac{1}{\frac{\text{hypotenuse}}{\text{opposite}}} = \dfrac{1}{\csc\left( \theta \right)}. \nonumber \]We leave it to the reader to show that all other Reciprocal Identities also hold.

    Likewise,\[ \tan\left( \theta \right) = \dfrac{\text{opposite}}{\text{adjacent}} = \dfrac{\frac{\text{opposite}}{\text{hypotenuse}}}{\frac{\text{adjacent}}{\text{hypotenuse}}} = \dfrac{\sin\left( \theta \right)}{\cos\left( \theta \right)}. \nonumber \]Again, we leave it to the reader to finish showing that both Ratio Identities still hold.

    Finally, it is left as a homework exercise to show that the Pythagorean Identity still holds with this new definition.

    Example \(\PageIndex{3}\)

    If \( \theta \) is an acute angle in a right triangle and \( \tan\left( \theta \right) = \frac{15}{8} \), compute the remaining trigonometric ratios of \( \theta \).

    Solution
    It is best to sketch the right triangle with \( \theta \) and where the side adjacent to \( \theta \) has length 8 and the side opposite \( \theta \) has length 15.

    3.1 Example 03.png

    Using the Pythagorean Theorem, we get\[\begin{array}{rrcl}
    & 8^2 + 15^2 & = & h^2 \\
    \implies & 289 & = & h^2 \\
    \implies & 17 & = & h \\
    \end{array} \nonumber \]Hence,\[ \begin{array}{rclcrcccccl}
    \sin\left( \theta \right) & = & \dfrac{15}{17} & \implies & \csc\left( \theta \right) & = & \dfrac{1}{\sin\left( \theta \right)} & = & \dfrac{1}{15/17} & = & \dfrac{17}{15} \\
    \cos\left( \theta \right) & = & \dfrac{8}{17} & \implies & \sec\left( \theta \right) & = & \dfrac{1}{\cos\left( \theta \right)} & = & \dfrac{1}{8/17} & = & \dfrac{17}{8} \\
    \tan\left( \theta \right) & = & \dfrac{15}{8} & \implies & \cot\left( \theta \right) & = & \dfrac{1}{\tan\left( \theta \right)} & = & \dfrac{1}{15/8} & = & \dfrac{8}{15} \\
    \end{array} \nonumber \]
    Checkpoint \(\PageIndex{3}\)

    If \( \beta \) is an acute angle in a right triangle and \( \csc\left( \beta \right) = \frac{2}{\sqrt{3}} \), compute the remaining trigonometric ratios of \( \beta \).

    Answer

    \[ \begin{array}{rclcrcl}
    \sin\left( \beta \right) & = & \dfrac{\sqrt{3}}{2} & \qquad & \csc\left( \beta \right) & = & \dfrac{2}{\sqrt{3}} \\
    \cos\left( \beta \right) & = & \dfrac{1}{2} & \qquad & \sec\left( \beta \right) & = & 2 \\
    \tan\left( \beta \right) & = & \sqrt{3} & \quad & \cot\left( \beta \right) & = & \dfrac{1}{\sqrt{3}} \\
    \end{array} \nonumber \]

    Example \( \PageIndex{ 4} \)

    If \(\sin \left(\theta\right) = \frac{3}{7}\) and \( \cos\left( \theta \right) = \frac{2\sqrt{10}}{7}\), where \(\theta\) is an acute angle within a right triangle, find the value of \(\cot \left(\theta\right)\) without drawing a triangle.

    Solution

    \[\begin{array}{rcl}
    \cot\left( \theta \right) & = & \dfrac{\cos\left( \theta \right)}{\sin\left( \theta \right)} \\
    & = & \dfrac{2\sqrt{10}/7}{3/7} \\
    & = & \dfrac{2\sqrt{10}}{3} \\
    \end{array} \nonumber \]

    Checkpoint \( \PageIndex{ 4} \)

    If \( \lambda \) is an acute angle in a right triangle, \(\tan \left(\lambda \right) = \frac{2}{3}\), and \(\cos \left( \lambda \right) = \frac{3}{\sqrt{13}}\), find \( \sin\left( \lambda \right) \) using only the Ratio Identities.

    Answer

    \(\sin\left( \lambda \right) = \frac{2}{\sqrt{13}}\)

    Right Triangle Trigonometry and the Special Angles

    Now that we have a right triangle definition for the trigonometric functions, we can use our special triangles to help us quickly evaluate the trigonometric functions at \( 30^{ \circ } \), \( 45^{ \circ } \), and \( 60^{ \circ } \) angles. These angles are foundations upon which we build the rest of Trigonometry.

    Fundamental Trigonometric Ratios for the Special Angles

    \[\begin{array}{|c|c|c|c|}
    \hline \text { Angle } & \text { Sine } & \text { Cosine } & \text { Tangent } \\
    \hline 30^{\circ} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{3}} \\
    \hline 45^{\circ} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\
    \hline 60^{\circ} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} \\
    \hline
    \end{array} \nonumber \]

    The exact values for these trigonometric ratios should be committed to memory. A great way to remember them is to know the two special triangles in Figures \( \PageIndex{ 1a } \) and \( \PageIndex{ 1b } \) below. Writing down the three trigonometric ratios for the special angles from these triangles is simple.

    Screen Shot 2022-09-16 at 3.40.56 PM.png

    Figure \( \PageIndex{ 1a } \) (left): The \( 45^{\circ}-45^{\circ}-90^{\circ} \) special triangle, and Figure \( \PageIndex{ 1b } \) (right): The \( 30^{\circ}-60^{\circ}-90^{\circ} \) special triangle

    For example, we can quickly compute \( \tan\left( 60^{ \circ } \right) \) and \( \sec\left( 30^{ \circ } \right) \) by sketching the \( 30^{ \circ } \)-\( 60^{ \circ } \)-\( 90^{ \circ } \) triangle and finding the ratios of the relevant sides.

    \[\sec \left(30^{\circ}\right) = \frac{\text { hypotenuse }}{\text { adjacent }}=\frac{2}{\sqrt{3}} \quad \quad \quad \tan \left(60^{\circ}\right)=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sqrt{3}}{1}=\sqrt{3} \nonumber \]

    These are exact values for the trigonometric ratios, but we can also find decimal approximations. Use a calculator to verify the following approximate values.

    \[ \begin{array}{rcccc}
    & & \text{exact value} & & \text{approximation}\\
    \sec \left(30^{\circ}\right) & = & \dfrac{2}{\sqrt{3}} & \approx & 1.1547 \\
    \tan \left(60^{\circ}\right) & = & \sqrt{3} & \approx & 1.7321 \\
    \end{array} \nonumber \]

    Caution: Approximations are NOT Exact

    It is essential to understand the difference between exact and approximate values. The decimal approximations above are rounded off. Even if a calculator shows ten or twelve digits, the values are not precisely correct - although they are adequate for most practical calculations.

    Computational Note: To Rationalize or Not To Rationalize... That is the Question

    Did you notice that we left \( \sec\left(30^{\circ}\right) = \frac{2}{\sqrt{3}} \) with a radical in its denominator? This is quite common in Trigonometry. While one can rationalize the denominator to get\[ \sec\left( 30^{\circ} \right) = \dfrac{2}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{2\sqrt{3}}{3}, \nonumber \]the need to do so with numerical expressions (expressions not involving variables) is an antiquated "throwback" to the days when calculators did not exist. As such, unless it truly simplifies an expression, we will be okay with leaving radicals in the denominators of numerical expressions for the rest of mathematics.

    Example \( \PageIndex{ 5 } \)

    Matterhorn Chocolate bars are sold in boxes shaped like triangular prisms. The two triangular ends of a box are equilateral triangles with 8-centimeter sides. When stacking the boxes on a shelf, the second level will be a triangle’s altitude above the bottom level. Find the exact length of the triangle’s altitude, \(h\).

    Solution

    We have seen this question before. The altitude divides the triangle into two \(30^{\circ}-60^{\circ}-90^{\circ}\) right triangles, as shown in the figure below.

    Screen Shot 2022-09-16 at 3.33.18 PM.png

    The altitude is adjacent to the \(30^{\circ}\) angle and the hypotenuse of the right triangle is 8 centimeters. Thus, using the fact that we already know \( \cos\left( 30^{\circ} \right) = \frac{\sqrt{3}}{2} \), we get\[\begin{array}{rrclr}
    & \cos \left(30^{\circ}\right) & = & \dfrac{\text { adjacent }}{\text { hypotenuse }} & (\text{Fill in the values.}) \\
    \implies & \dfrac{\sqrt{3}}{2} & = & \dfrac{h}{8} & (\text{Multiply both sides by 8}) \\
    \implies & h & = & 8\left(\dfrac{\sqrt{3}}{2}\right)=4 \sqrt{3} & \\
    \end{array} \nonumber \]The altitude is exactly \(4 \sqrt{3}\) centimeters long. From this exact answer, we can find approximations to any degree of accuracy we like. You can check that \(4 \sqrt{3} \approx 6.9282\), so the altitude is approximately \(6.9\) centimeters long.

    Checkpoint \( \PageIndex{ 5 } \)

    Show that \(\cos^2\left( 60^{ \circ } \right) + \sin^2\left(60^{\circ}\right) = 1\).

    Answer

    \(\cos^2\left( 60^{ \circ } \right) + \sin^2\left(60^{\circ}\right) = \left( \dfrac{1}{2} \right)^2 + \left( \dfrac{\sqrt{3}}{2} \right)^2 = \dfrac{1}{4} + \dfrac{3}{4} = 1\).

    Example \(\PageIndex{6}\)

    Let \( x = 60^{ \circ } \) and \( y=45^{ \circ } \). Evaluate.\[ \sqrt{3} \csc\left( x \right) - \dfrac{5}{\sqrt{2}} \sec\left( y \right) + \sqrt{6} \tan\left( 90^{\circ} - x \right) \sin\left( y \right) \nonumber \]

    Solution
    Using our two special triangles in Figures \( \PageIndex{ 1a } \) and \( \PageIndex{ 1b } \), we get\[ \begin{array}{rcl}
    \sqrt{3} \csc\left( x \right) - \dfrac{5}{\sqrt{2}} \sec\left( y \right) + \sqrt{6} \tan\left( 90^{\circ} - x \right) \sin\left( y \right) & = & \sqrt{3} \csc\left( 60^{ \circ }\right) - \dfrac{5}{\sqrt{2}} \sec\left( 45^{ \circ } \right) + \sqrt{6} \tan\left( 90^{\circ} - 60^{ \circ } \right) \sin\left( 45^{ \circ } \right) \\
    & = & \sqrt{3} \csc\left( 60^{ \circ }\right) - \dfrac{5}{\sqrt{2}} \sec\left( 45^{ \circ } \right) + \sqrt{6} \tan\left( 30^{\circ} \right) \sin\left( 45^{ \circ } \right) \\
    & = & \cancel{\sqrt{3}} \left( \dfrac{2}{\cancel{\sqrt{3}}}\right) - \left(\dfrac{5}{\cancel{\sqrt{2}}}\right) \left(\dfrac{\cancel{\sqrt{2}}}{1} \right) + \left(\cancel{\sqrt{6}}\right)\left(\dfrac{1}{\cancel{\sqrt{3}}}\right)\left(\dfrac{1}{\cancel{\sqrt{2}}}\right) \\
    & = & 2 - 5 + 1 \\
    & = & -2
    \end{array} \nonumber \]
    Checkpoint \(\PageIndex{6}\)

    Evaluate and write as a single expression.\[ 3 \cos\left( 45^{ \circ } \right) - 2\cot\left( 30^{ \circ } \right) \nonumber \]

    Answer

    \( \dfrac{3- 2 \sqrt{6}}{\sqrt{2}} \)

    Cofunction Identities

    The following definition may answer a burning question you have had since being introduced to trigonometric functions.

    Definition: Cofunction

    The sine and cosine are called cofunctions. Likewise, the tangent and cotangent, as well as the secant and cosecant, are called cofunctions.

    We say the sine is the cofunction of the cosine, and the cosine is the cofunction of the sine. The same holds for tangent and cotangent, and secant and cosecant. Now that we have a definition for cofunctions, what's the big deal?

    The right triangle definition of the trigonometric functions reveals a new identity that was not so obvious when working with the coordinate definition of trigonometric functions. Consider the right triangle in Figure \( \PageIndex{ 2 } \) below.

    3.1 Definition Right Triangle Functions Fixed.png
    Figure \( \PageIndex{ 2 } \)

    By the Triangle Sum, \( \angle A + \angle B + \angle C = 180^{ \circ } \); however, \( \angle C = 90^{ \circ } \). Therefore, \( \angle A + \angle B = 90^{ \circ } \). That is, \( \angle A = 90^{ \circ } - \angle B \). By the right triangle definition,\[ \begin{array}{rcccccccl}
    \sin\left( \angle A \right) & = & \dfrac{\text{Opposite }A}{\text{Hypotenuse}} & = & \dfrac{\text{Adjacent }B}{\text{Hypotenuse}} & = & \cos\left( \angle B \right) & = & \cos\left( 90^{ \circ } - \angle A \right) \\
    \sec\left( \angle A \right) & = & \dfrac{\text{Hypotenuse}}{\text{Adjacent }A} & = & \dfrac{\text{Hypotenuse}}{\text{Opposite }B} & = & \csc\left( \angle B \right) & = & \csc\left( 90^{ \circ } - \angle A \right) \\
    \tan\left( \angle A \right) & = & \dfrac{\text{Opposite }A}{\text{Adjacent }A} & = & \dfrac{\text{Adjacent }B}{\text{Opposite }B} & = & \cot\left( \angle B \right) & = & \cot\left( 90^{ \circ } - \angle A \right) \\
    \end{array} \nonumber \]

    At this point, I hope you can see a budding relationship between a function and its cofunction. The following theorem summarizes the results (the proof of which will be held off until we have more mathematics to work with).

    Theorem: Cofunction Identities

    The trigonometric function of an angle is equal to the cofunction evaluated at the complement of the angle. That is,\[ \begin{array}{rcccccccl}
    \sin\left( \theta \right) & = & \cos\left( 90^{ \circ } - \theta \right) & \quad & \text{and} & \quad & \cos\left( \theta \right) & = & \sin\left( 90^{ \circ } - \theta \right) \\
    \sec\left( \theta \right) & = & \csc\left( 90^{ \circ } - \theta \right) & \quad & \text{and} & \quad & \csc\left( \theta \right) & = & \sec\left( 90^{ \circ } - \theta \right) \\
    \tan\left( \theta \right) & = & \cot\left( 90^{ \circ } - \theta \right) & \quad & \text{and} & \quad & \cot\left( \theta \right) & = & \tan\left( 90^{ \circ } - \theta \right) \\
    \end{array} \nonumber \]

    Example \(\PageIndex{7}\)

    Evaluate (by hand).\[ \sin^2\left( 13^{ \circ } \right) + \sin^2\left( 77^{\circ} \right) \nonumber \]

    Solution
    \[ \begin{array}{rcl}
    \sin^2\left( 13^{ \circ } \right) + \sin^2\left( 77^{ \circ } \right) & = & \sin^2\left( 13^{ \circ } \right) + \left(\sin\left( 77^{ \circ } \right)\right)^2 \\
    & = & \sin^2\left( 13^{ \circ } \right) + \left(\cos\left(90^{ \circ } - 77^{ \circ } \right)\right)^2 \\
    & = & \sin^2\left( 13^{ \circ } \right) + \left(\cos\left(13^{ \circ }\right)\right)^2 \\
    & = & \sin^2\left( 13^{ \circ } \right) + \cos^2\left(13^{ \circ }\right) \\
    & = & 1
    \end{array} \nonumber \]
    Checkpoint \(\PageIndex{7}\)

    Write the function in terms of its cofunction.

    1. \( \sin\left( 13^{ \circ } \right) \)
    2. \( \cot\left( 60^{ \circ } \right) \)
    3. \( \sec\left( y \right) \)
    Answers
    1. \( \sin\left( 13^{ \circ } \right) = \cos\left( 90^{ \circ } - 13^{ \circ }\right) = \cos\left( 77^{ \circ } \right) \)
    2. \( \cot\left( 60^{ \circ } \right) = \tan\left( 90^{ \circ } - 60^{ \circ } \right) = \tan\left( 30^{ \circ } \right) \)
    3. \( \sec\left( y \right) = \csc\left( 90^{ \circ } - y \right) \)

    Observations of Values for Trigonometric Functions Using Right Triangle Trigonometry

    We have now spent a decent amount of time with the trigonometric functions - both defined in terms of coordinates on the Cartesian plane and in terms of ratios of sides of right triangles. It's now time to formalize some observations.

    Trigonometric Functions are Invariant When Scaling Right Triangles

    The trigonometric function of an angle is the same for any right triangle, no matter the size or orientation of the triangle. Another way to say this is the values of the trigonometric functions are invariant under scaling of the right triangle. For example, the figure below shows three right triangles, each with a \(50^{\circ}\) angle. Although the sides of the triangle may be bigger or smaller, the ratio \(\frac{\text { opposite }}{\text { hypotenuse }}\) is always the same for that angle because the triangles are similar. Therefore, \( \sin\left( 50^{ \circ } \right) \) is the same for all three right triangles.

    Screen Shot 2022-09-13 at 2.17.26 PM.png

    Similarly, the values of all the other trigonometric functions at \( 50^{ \circ } \) remain constant when we scale the triangles to be larger or smaller.

    Some Trigonometric Functions Have Limited Ranges

    Consider the right triangle definition of the trigonometric functions. Since the hypotenuse is the longest side of a right triangle, the ratios\[ \sin\left( \theta \right) = \dfrac{\text{opposite}}{\text{hypotenuse}} \quad \text{and} \quad \cos\left( \theta \right) = \dfrac{\text{adjacent}}{\text{hypotenuse}} \nonumber \]will always be less than 1.

    Moreover, if we think about the coordinate definition of the trigonometric functions,\[ \sin\left( \theta \right) = \dfrac{y}{r} \quad \text{and} \quad \cos\left( \theta \right) = \dfrac{x}{r}. \nonumber \]Since \( r = \sqrt{x^2 + y^2} \geq \sqrt{y^2} = |y| \) and \( r = \sqrt{x^2 + y^2} \geq \sqrt{x^2} = |x| \),\[ \begin{array}{rcccccccl}
    |y| \leq r & \implies & \dfrac{|y|}{r} \leq 1 & \implies & \left| \dfrac{y}{r} \right| \leq 1 & \implies & \left| \sin\left( \theta \right) \right| \leq 1 & \implies & -1 \leq \sin\left( \theta \right) \leq 1 \\
    & & & & \text{and} & & & & \\
    |x| \leq r & \implies & \dfrac{|x|}{r} \leq 1 & \implies & \left| \dfrac{x}{r} \right| \leq 1 & \implies & \left| \cos\left( \theta \right) \right| \leq 1 & \implies & -1 \leq \cos\left( \theta \right) \leq 1 \\
    \end{array} \nonumber \]The only times the sine or cosine become \( 1 \) or \( -1 \) is when the given angle is a quadrantal angle.

    Example \(\PageIndex{8}\)

    If \( \theta \) is an angle within a right triangle, is it possible for \( \sec\left( \theta \right) = \frac{1}{2}\)? Explain.

    Solution
    \( \sec\left( \theta \right) \) is the ratio of the hypotenuse to the adjacent side of \( \theta \); however, the hypotenuse of a right triangle is always longer than the other sides. Therefore, the ratio \( \frac{\text{hypotenuse}}{\text{adjacent}} \) must be greater than 1 (by the discussion before this example, the secant can attain a value of 1 only if the given angle is a quadrantal angle).
    Checkpoint \(\PageIndex{8}\)

    Can \( \csc\left( \theta \right) \) ever be 2?

    Answer

    Yes!

    Using Special Angles to Approximate Trigonometric Functions at Other Angles

    In a right triangle, as the angle \(\theta\) increases, \(\sin\left( \theta\right)\) increases but \(\cos\left( \theta\right)\) decreases. The figure below demonstrates why this is true. In each right triangle, the hypotenuse has the same length. However, as the angle increases, the opposite side gets longer, and the adjacent side gets shorter.

    Screen Shot 2022-09-13 at 2.52.39 PM.png

    We can use the special angles as benchmarks for estimating and mental calculation. For example, we know that \(\sin \left(60^{\circ}\right) \approx 0.8660\), so if \(\sin \left(\theta\right) = 0.95\) for some unknown angle \(\theta\) within a right triangle, we know that \(\theta > 60^{\circ}\), because as \(\theta\) increases, the sine of \(\theta\) increases as well.

    Example \( \PageIndex{ 9 } \)

    If \(\cos \left(\alpha\right) > \frac{\sqrt{3}}{2}\), where \( \alpha \) is an angle within a right triangle, what can we say about \(\alpha\)?

    Solution

    As an angle increases from \(0^{\circ}\) to \(90^{\circ}\), its cosine decreases (why?). Now, \(\cos \left(30^{\circ}\right) = \dfrac{\sqrt{3}}{2}\), so if \(\cos \left(\alpha\right) > \frac{\sqrt{3}}{2}\), then \(\alpha\) must be less than \(30^{\circ}\).

    Checkpoint \( \PageIndex{ 9 } \)

    If \(1 < \tan \left(\beta\right) < \sqrt{3}\), where \( \beta \) is one of the angles in a right triangle, what can we say about \(\beta\)?

    Answer

    \(45^{\circ} < \beta < 60^{\circ}\)


    Skills Refresher

    Review the following skills you will need for this section.

    Skills Refresher

    For Problems 1 - 4, write two more ratios equivalent to the given fraction.

    1. \(\dfrac{10}{4}\)

    2. \(\dfrac{6}{8}\)

    3. \(0.6\)

    4. \(1.5\)

    For Problems 5 - 8, compute the slope of the line.


    1. Screen Shot 2022-09-13 at 3.16.26 PM.png


    2. Screen Shot 2022-09-13 at 3.16.38 PM.png


    3. Screen Shot 2022-09-13 at 3.16.49 PM.png


    4. Screen Shot 2022-09-13 at 3.16.57 PM.png

    For Problems 9 and 10, solve.

    1. \(\dfrac{12}{x} = 48\)

    2. \(\dfrac{60}{x} = 80\)

    For Problems 11 - 15, solve the formula for the specified variable.

    1. \( C = 2 \pi r\) for \(r\) (Circumference of a Circle)

    2. \( r = \frac{d}{t}\) for \(t\)

    3. \(P = 2a + b - c\) for \(a\)

    4. \(x = \frac{2}{3}y + 10\) for \(y\)

    5. \(S = 2 \pi r h + 2\pi r^2\) for \(h\) (Surface Area of a Right Circular Cylinder)

    Answers

    (Many answers are possible for 1-4.)

    1. \(\dfrac{5}{2}, \dfrac{20}{8}\)

    2. \(\dfrac{3}{4}, \dfrac{12}{16}\)

    3. \(\dfrac{3}{5}, \dfrac{12}{20}\)

    4. \(\dfrac{6}{4}, \dfrac{12}{8}\)

    5. \(\dfrac{2}{5}\)

    6. \(\dfrac{-8}{5}\)

    7. \(\dfrac{-6}{5}\)

    8. \(\dfrac{1}{2}\)

    9. \(\dfrac{1}{4}\)

    10. \(\dfrac{3}{4}\)

    11. \(r = \frac{C}{2\pi}\)

    12. \(t = \frac{d}{r} \)

    13. \(a = \frac{P - b + c}{2}\)

    14. \(y = \frac{3}{2}(x - 10)\)

    15. \(h = \frac{S - 2\pi r^2}{2 \pi r} \)


    Homework

    Vocabulary Check

    1. The sequences of natural numbers, (3, 4, 5) and (7, 24, 25), are both examples of ___.

    2. Just like the tangent and cotangent, the secant and cosecant are called ___.

    Concept Check

    1. Sketch a figure that illustrates why \(\cos 25^{\circ}\) is the same for every right triangle with a \(25^{\circ}\) angle.

    2. Sketch a figure that illustrates why \(\cos \theta\) decreases as \(\theta\) increases from \(0^{\circ}\) to \(90^{\circ}\).

    3. Linda says that \(\sin \theta=\frac{4}{7}\) in the figure. Is she correct? Why or why not?

      Screen Shot 2022-09-30 at 1.20.50 PM.png

    True or False? For Problems 6 - 8, determine if the statement is true or false. If true, cite the definition or theorem stated in the text supporting your claim. If false, explain why it is false and, if possible, correct the statement.

    1. Given a triangle having \( \theta \) as one of its interior angles, the tangent of the angle \( \theta \) is the ratio of the side opposite \( \theta \) to the side adjacent to \( \theta \).

    2. \( \sin\left( 60^{ \circ } \right) = 0.8660 \)

    3. The value of a trigonometric function of an angle is equal to the value of its cofunction at the complement of the angle.

    Basic Skills

    For Problems 9 - 12, fill in the table.

    1.  

      Screen Shot 2022-09-13 at 4.48.42 PM.png

        \(\sin\) \(\cos\) \(\tan\)
      \(\theta\)      
      \(\phi\)      
    2.  

      Screen Shot 2022-09-13 at 4.48.53 PM.png

        \(\sin\) \(\cos\) \(\tan\)
      \(\theta\)      
      \(\phi\)      
    3.  

      Screen Shot 2022-09-13 at 4.49.06 PM.png

        \(\sin\) \(\cos\) \(\tan\)
      \(\theta\)      
      \(\phi\)      
    4.  

      Screen Shot 2022-09-13 at 4.49.16 PM.png

        \(\sin\) \(\cos\) \(\tan\)
      \(\theta\)      
      \(\phi\)      
    5. In each of the figures for Problems 9 - 12, what is the relationship between the angles \(\theta\) and \(\phi\)?

    6. Study the tables for Problems 9 - 12. What do you notice about the values of sine and cosine for the angles \(\theta\) and \(\phi\)? Explain why this is true.

    7. There is a relationship between the tangent, the sine, and the cosine of any angle. Study the tables for Problems 9 - 12 to discover this relationship. Write your answer as an equation.

    For Problems 16 - 21,
    (a) Find the length of the unknown side.
    (b) Find the sine, cosine, and tangent of \(\theta\). Round your answers to four decimal places.

    1.  

      Screen Shot 2022-09-13 at 4.23.38 PM.png

    2.  

      Screen Shot 2022-09-13 at 4.23.55 PM.png

    3.  

      Screen Shot 2022-09-13 at 4.24.10 PM.png

    4.  

      Screen Shot 2022-09-13 at 4.24.19 PM.png

    5.  

      Screen Shot 2022-09-13 at 4.24.31 PM.png

    6.  

      Screen Shot 2022-09-13 at 4.24.42 PM.png

    For Problems 22 - 25, find exact values for the six trigonometric ratios of the angle \(\theta\).

    1.  

      Screen Shot 2023-01-23 at 10.21.41 PM.png

    2.  

      Screen Shot 2023-01-23 at 10.21.54 PM.png

    3.  

      Screen Shot 2023-01-23 at 10.22.05 PM.png

    4.  

      Screen Shot 2023-01-23 at 10.22.15 PM.png

    For Problems 26 - 31,
    (a) Sketch and label the sides of a right triangle with angle \(\theta\).
    (b) Sketch and label another right triangle with angle \(\theta\) and longer sides.

    1. \(\cos \theta=\dfrac{3}{5}\)

    2. \(\tan \theta=\dfrac{7}{2}\)

    3. \(\tan \theta=\dfrac{11}{4}\)

    4. \(\sin \theta=\dfrac{4}{9}\)

    5. \(\sin \theta=\dfrac{1}{9}\)

    6. \(\cos \theta=\dfrac{7}{8}\)

    For Problems 32 - 37, use a trigonometric ratio to write an equation for \(x\) in terms of \(\theta\).

    1.  

      Screen Shot 2022-09-13 at 4.41.29 PM.png

    2.  

      Screen Shot 2022-09-13 at 4.41.41 PM.png

    3.  

      Screen Shot 2022-09-13 at 4.41.51 PM.png

    4.  

      Screen Shot 2022-09-13 at 4.42.00 PM.png

    5.  

      Screen Shot 2022-09-13 at 4.42.09 PM.png

    6.  

      Screen Shot 2022-09-13 at 4.42.20 PM.png

    For Problems 38 - 41, write algebraic expressions for the six trigonometric ratios of the angle \(\theta\).

    1.  

      Screen Shot 2023-01-23 at 10.34.40 PM.png

    2.  

      Screen Shot 2023-01-23 at 10.34.51 PM.png

    3.  

      Screen Shot 2023-01-23 at 10.34.58 PM.png

    4.  

      Screen Shot 2023-01-23 at 10.35.09 PM.png

    For Problems 42 - 45, write the expression in terms of sine and cosine, and simplify.

    1. \(\dfrac{\csc t}{\cot t}\)

    2. \(\dfrac{\tan v}{\sec v}\)

    3. \(\sec \beta-\tan \beta\)

    4. \(\cot \alpha + \csc \alpha\)

    For Problems 46 - 49, choose all values from the list below that are exactly equal to, or decimal approximations for, the given trigonometric ratio. (Try not to use a calculator!)\[\begin{array}{|ccccc|}
    \hline \sin 30^{\circ} & \cos 45^{\circ} & \sin 60^{\circ} & \tan 45^{\circ} & \tan 60^{\circ} \\
    0.5000 & 0.5774 & 0.7071 & 0.8660 & 1.0000 \\
    \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{2}} & \frac{3}{\sqrt{2}} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\
    \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{\sqrt{3}}{2} & \sqrt{3} & \frac{\sqrt{3}}{3} \\
    \hline
    \end{array}\nonumber\]

    1. \(\cos 30^{\circ}\)

    2. \(\sin 45^{\circ}\)

    3. \(\tan 30^{\circ}\)

    4. \(\cos 60^{\circ}\)

    For Problems 50 - 55, evaluate. Give exact values.

    1. \(\sin \left(30^{\circ}\right)\)

    2. \(\tan \left(45^{\circ}\right)\)

    3. \(\sin \left(60^{\circ}\right)\)

    4. \(\csc \left(30^{\circ}\right)\)

    5. \(\cot \left(45^{\circ}\right)\)

    6. \(\csc \left(60^{\circ}\right)\)

    Synthesis Questions

    For Problems 56 - 57, evaluate.

    1. \(4 \cot \left( 60^{\circ}\right)+2 \sec \left(45^{\circ}\right)\)

    2. \(\dfrac{1}{2} \csc \left(30^{\circ}\right) -\dfrac{1}{4} \cot \left(30^{\circ}\right)\)

    For Problems 58 - 61, solve the equation assuming that \( \theta \) is an acute angle in a right triangle.

    1. \(3 \csc \left(\theta\right)+2=8\)

    2. \(-2 \sec \left(\theta\right)+8=6\)

    3. \(\sqrt{2} \sec \left(\theta\right)=2\)

    4. \(\sqrt{3} \cot \left(\theta\right)=1\)

    5.  

      Screen Shot 2022-09-13 at 5.00.18 PM.png

      1. Use the figure to explain what happens to \(\tan \theta\) as \(\theta\) increases, and why.

      2. Use the figure to explain what happens to \(\cos \theta\) as \(\theta\) increases, and why.

    For Problems 63 - 66, explain why the trigonometric ratio is not correct.

    1. \(\sin \theta=\dfrac{5}{9}\)

      Screen Shot 2022-09-15 at 4.28.19 PM.png

    2. \(\tan \theta = \dfrac{4}{7}\)

      Screen Shot 2022-09-15 at 4.39.04 PM.png

    3. \(\cos \theta=\dfrac{21}{20}\)

      Screen Shot 2022-09-15 at 4.39.45 PM.png

    4. \(\sin \theta = \dfrac{8}{10}\)

      Screen Shot 2022-09-15 at 4.40.30 PM.png

    For Problems 67 - 70, sketch and label a right triangle, then fill in the blank.

    1.  

      1. If \(\sin \theta=0.2358\), then \(\cos \left(90^{\circ}-\theta\right)= \)_______.

      2. If \(\cos \alpha=\frac{3}{11}\), then _______ \(\left(90^{\circ}-\alpha\right)=\frac{3}{11}\).

      3. If \(\sin 42^{\circ}=n\), then \(\cos \)_______\(=n\).

      4. If \(\cos 13^{\circ}=z\), then \(\sin\)_______\( = z\).

    2.  

      1. If \(\cos \beta=\frac{2}{\sqrt{7}}\), then \(\sin \left(90^{\circ}-\beta\right)= \)_______.

      2. If \(\sin \phi=0.693\), then _______\(-\left(90^{\circ}-\phi\right)=0.693\).

      3. If \(\cos 87^{\circ}=p\), then \(\sin \)_______\( =p\).

      4. If \(\sin 59^{\circ}=w\), then \(\cos\)_______\(=w\).

    3.  

      1. If \(\sin \phi=\frac{5}{13}\) and \(\cos \phi=\frac{12}{13}\), then \(\tan \phi= \)_______.

      2. If \(\cos \beta=\frac{1}{\sqrt{10}}\), and \(\sin \beta=\frac{3}{\sqrt{10}}\), then \(\tan \beta= \)_______.

      3. If \(\tan B=\frac{2}{\sqrt{5}}\) and \(\cos B=\frac{\sqrt{5}}{3}\), then \(\sin B= \)_______.

      4. If \(\sin W=\sqrt{\frac{3}{7}}\) and \(\tan W=\frac{\sqrt{3}}{2}\), then \(\cos W= \)_______.

    4.  

      1. If \(\cos \theta=\frac{2}{\sqrt{10}}\) and \(\sin \theta=\sqrt{\frac{3}{5}}\), then \(\tan \theta= \)_______.

      2. If \(\sin \alpha=\frac{\sqrt{2}}{4}\), and \(\cos \alpha=\frac{\sqrt{14}}{4}\), then \(\tan \alpha= \)_______.

      3. If \(\tan A=\frac{\sqrt{7}}{3}\) and \(\cos A=\frac{3}{4}\), then \(\sin A=\)_______.

      4. If \(\sin V=\sqrt{\frac{10}{5}}\) and \(\tan V=\frac{2}{5}\), then \(\cos V=\)_______.

    5. Explain why the cosine of a \(73^{\circ}\) angle is always the same, no matter what size triangle the angle is in. Illustrate your explanation with a sketch.

    6.  

      1. What is the slope of the line through the origin and point \(P\)?

      2. What is the tangent of the angle \(\theta\)?

      3. On the same grid, sketch an angle whose tangent is \(\frac{8}{5}\)

        Screen Shot 2022-09-16 at 7.48.48 AM.png

    7. Which of the following numbers are equal to \(\cos 45^{\circ}\)?

      1. \(\dfrac{\sqrt{2}}{2}\)

      2. \(\dfrac{1}{\sqrt{2}}\)

      3. \(\dfrac{2}{\sqrt{2}}\)

      4. \(\sqrt{2}\)

    8. Which of the following numbers are equal to \(\tan 30^{\circ}\)?

      1. \(\sqrt{3}\)

      2. \(\dfrac{1}{\sqrt{3}}\)

      3. \(\dfrac{\sqrt{3}}{3}\)

      4. \(\dfrac{3}{\sqrt{3}}\)

    9. Which of the following numbers are equal to \(\tan 60^{\circ}\)?

      1. \(\sqrt{3}\)

      2. \(\dfrac{1}{\sqrt{3}}\)

      3. \(\dfrac{\sqrt{3}}{3}\)

      4. \(\dfrac{3}{\sqrt{3}}\)

    10. Which of the following numbers are equal to \(\sin 60^{\circ}\)?

      1. \(\dfrac{3}{\sqrt{2}}\)

      2. \(\dfrac{\sqrt{3}}{2}\)

      3. \(\dfrac{\sqrt{2}}{3}\)

      4. \(\dfrac{2}{\sqrt{3}}\)

    Challenge Problems

    1. The diagram shows a unit circle. Find six line segments whose lengths are, respectively, \(\sin t, \cos t, \tan t, \sec t, \csc t\), and \(\cot t\).

      Screen Shot 2023-01-23 at 10.38.14 PM.png

    2. The figure shows a unit circle and an angle \(\theta\) in standard position. Each of the six trigonometric ratios for \(\theta\) is represented by the length of a line segment in the figure. Find the line segment for each ratio, and explain your choice.

      Screen Shot 2023-01-23 at 11.19.59 PM.png


    This page titled 3.1: The Trigonometric Functions - Right Triangle Definition is shared under a CC BY-NC 12 license and was authored, remixed, and/or curated by Roy Simpson.