Skip to main content
Mathematics LibreTexts

2.6E: Exercises

  • Page ID
    121753
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In exercises 1 - 10, use the precise definitions to prove the given limits.

    1) \(\displaystyle \lim_{x \to 0}\frac{1}{x^2}= \infty\)

    2) \(\displaystyle \lim_{x \to −1}\frac{3}{(x+1)^2}= \infty\)

    Answer
    Let \( \delta =\sqrt{\frac{3}{N}}\). If \(0 <|x+1| <\sqrt{\frac{3}{N}}\), then \(f(x)=\frac{3}{(x+1)^2} >N\).

    3) \(\displaystyle \lim_{x \to 2} −\frac{1}{(x −2)^2}= − \infty\)

    4) \(\displaystyle \lim_{x \to \pi^+} \ln{(x −\pi)}= − \infty\)

    5) \(\displaystyle \lim_{x \to \infty} \frac{2}{x^6} = 0\)

    6) \(\displaystyle \lim_{x \to -\infty} -\frac{5}{x^3} = 0\)

    7) \(\displaystyle \lim_{x \to \infty} a x^6 = \infty \), where \( a \gt 0 \)

    8) \(\displaystyle \lim_{x \to -\infty} (-10 + 2 x^5) = -\infty \)

    9) \(\displaystyle \lim_{x \to -\infty} e^{-x} = \infty \)

    10) \(\displaystyle \lim_{x \to -\infty} e^{x} = 0 \)


    This page titled 2.6E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Roy Simpson.

    • Was this article helpful?