Skip to main content
Mathematics LibreTexts

3.8E: Exercises

  • Page ID
    116577
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For exercises 1 - 8, use logarithmic differentiation to find \(\dfrac{dy}{dx}\).

    1) \(y=x^{\sqrt{x}}\)

    2) \(y=(\sin 2x)^{4x}\)

    Answer
    \(\dfrac{dy}{dx} = (\sin 2x)^{4x}\big[4⋅\ln(\sin 2x)+8x⋅\cot 2x\big]\)

    3) \(y=(\ln x)^{\ln x}\)

    4) \(y=x^{\log_2x}\)

    Answer
    \(\dfrac{dy}{dx} = x^{\log_2x}⋅\dfrac{2\ln x}{x\ln 2}\)

    5) \(y=(x^2−1)^{\ln x}\)

    6) \(y=x^{\cot x}\)

    Answer
    \(\dfrac{dy}{dx} = x^{\cot x}⋅\left[−\csc^2x⋅\ln x+\dfrac{\cot x}{x}\right]\)

    7) \(y=\dfrac{x+11}{\sqrt[3]{x^2−4}}\)

    8) \(y=x^{−1/2}(x^2+3)^{2/3}(3x−4)^4\)

    Answer
    \(\dfrac{dy}{dx} = x^{−1/2}(x^2+3)^{2/3}(3x−4)^4⋅\left[\dfrac{−1}{2x}+\dfrac{4x}{3(x^2+3)}+\dfrac{12}{3x−4}\right]\)

    9) Consider the function \(y=x^{1/x}\) for \(x>0.\)

    a. Determine the points on the graph where the tangent line is horizontal.

    b. Determine the points on the graph where \(y^{\prime}>0\) and those where \(y^{\prime}<0\).

    Answer
    a. \(x=e \approx 2.718\)
    b. \(y^{\prime}>0 \text{ for } (0,e)\) and \(y^{\prime}<0 \text{ for } (e,∞).\)

    3.8E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?