Skip to main content
Mathematics LibreTexts

2.4: The Limit Laws - Limits at Infinity (Lecture Notes)

  • Page ID
    121550
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Finite Limits at Infinity and Horizontal Asymptotes

    Definition: Finite Limit at Infinity (Informal)

    If the values of \(f(x)\) become arbitrarily close to the finite value \(L\) as \(x\) becomes sufficiently large, we say the function \(f\) has a finite limit at infinity and write

    \[\lim_{x \to \infty}f(x)=L. \nonumber \]

    If the values of \(f(x)\) becomes arbitrarily close to the finite value \(L\) for \(x<0\) as \(|x|\) becomes sufficiently large, we say that the function \(f\) has a finite limit at negative infinity and write

    \[\lim_{x \to −\infty}f(x)=L. \nonumber \]

    If the values \(f(x)\) are getting arbitrarily close to some finite value \(L\) as \(x \to \infty\) or \(x \to −\infty\), the graph of \(f\) approaches the line \(y=L\). In that case, the line \(y=L\) is a horizontal asymptote of \(f\).

    Lecture Example \(\PageIndex{1}\)

    Build a table of values to investigate the limit.

    \[ \displaystyle \lim_{t \to -\infty}{ e^t \sin{(t)} } \nonumber \]

    Definition: Horizontal Asymptote

    If \(\displaystyle \lim_{x \to \infty}f(x)=L\) or \(\displaystyle \lim_{x \to −\infty}f(x)=L\), we say the line \(y=L\) is a horizontal asymptote of \(f\).

    Revisiting the Limit Laws

    Theorem \(\PageIndex{1}\): Limit Laws for Limits at Infinity

    Let \(f(x)\) and \(g(x)\) be defined for all \(x \gt a\), where \(a\) is a real number. Assume that \(L\) and \(M\) are real numbers such that \(\displaystyle \lim_{x \to \infty}{f(x)} = L\) and \(\displaystyle \lim_{x \to \infty}{g(x)} = M\). Let \(c\) be a constant. Then, each of the following statements holds:

    • Sum and Difference Laws for Limits:

    \[\displaystyle \lim_{x \to \infty}{(f(x) \pm g(x))} = \lim_{x \to \infty}{f(x)} \pm \lim_{x \to \infty}{g(x)} = L \pm M \nonumber \]

    • Constant Multiple Law for Limits:

    \[\displaystyle \lim_{x \to \infty}{cf(x)} = c \cdot \lim_{x \to \infty}{f(x)} = c L \nonumber \]

    • Product Law for Limits:

    \[\displaystyle \lim_{x \to \infty}{(f(x) \cdot g(x))} = \lim_{x \to \infty}{f(x)} \cdot \lim_{x \to \infty}{g(x)} = L \cdot M \nonumber \]

    • Quotient Law for Limits:

    \[\displaystyle \lim_{x \to \infty}\frac{f(x)}{g(x)} = \frac{\displaystyle \lim_{x \to \infty}f(x)}{\displaystyle \lim_{x \to \infty}g(x)}=\frac{L}{M} \nonumber \]

    for \(M \neq 0\).

    • Power Law for Limits:

    \[\displaystyle \lim_{x \to \infty}\big(f(x)\big)^n = \big(\lim_{x \to \infty}f(x)\big)^n = L^n \nonumber \]

    for every positive integer \(n\).

    • Root Law for Limits:

    \[\displaystyle \lim_{x \to \infty}\sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \infty} f(x)}=\sqrt[n]{L} \nonumber \]

    for all \(L\) if \(n\) is odd and for \(L \geq 0\) if \(n\) is even.

    Each of these Limit Laws can be adjusted for \(x \to -\infty\) as long as \(f(x)\) and \(g(x)\) are defined for all \(x \lt a\), where \(a\) is a real number.

    Lemma \(\PageIndex{1}\)

    \[ \displaystyle \lim_{x \to \infty}{x} = \infty, \nonumber \]

    \[ \displaystyle \lim_{x \to -\infty}{x} = -\infty, \nonumber \]

    and

    \[ \displaystyle \lim_{x \to \pm \infty}{\frac{1}{x}} = 0. \nonumber \]

    Theorem \(\PageIndex{2}\)

    If \(p \gt 0\) is a rational number, then

    \[ \displaystyle \lim_{x \to \infty}{\frac{1}{x^p}} = 0. \nonumber \]

    If \(p \gt 0 \) is a rational number such that \(x^p\) is defined for all \(x\), then

    \[ \displaystyle \lim_{x \to -\infty}{\frac{1}{x^p}} = 0. \nonumber \]

    Proof
    Let \(p\) be a rational number. The only constraint on using the Limit Laws is that the values of the limits must be finite. Therefore, \(a\) is allowed to be \(\pm \infty\). Thus,
    \[ \begin{array}{rclcl} \displaystyle \lim_{x \to \infty}{\frac{1}{x^p}} & = & \displaystyle \lim_{x \to \infty}{\left(\frac{1}{x}\right)^p} & & \\ & = & \left(\displaystyle \lim_{x \to \infty}{\frac{1}{x}} \right)^p & & (\text{a mixture of the Power Law and Root Law for Limits}) \\ & = & 0^p & & (\text{by Lemma }\PageIndex{1}) \\ & = & 0 & & \\ \end{array} \nonumber \]
    If we allow \(x \to -\infty\), then additional restrictions on \(p\) must be made. Specifically, since \(p\) is a rational number, it cannot be equivalent to a simplified fraction with an even denominator. Otherwise, the even denominator would imply an even-indexed root of \(x\), and this would result in imaginary numbers. Hence, as long as \(x^p\) is defined,
    \[ \displaystyle \lim_{x \to -\infty}{\frac{1}{x^p}} = 0 \nonumber \]
    by a similar derivation.

    Evaluating Finite Limits at Infinity

    Lecture Example \(\PageIndex{2}\): Evaluating Finite Limits at Infinity Having Indeterminate Forms

    Evaluate each of the following limits.

    1. \( \displaystyle \lim_{x \to \infty}{\frac{8.4 x^{15} - \pi x^9 + e}{4.2 x^{15} - x + 1.228}}\)
    2. \( \displaystyle \lim_{x \to -\infty}{\frac{\sqrt{11 + 2x + 4x^2}}{5 x - 8}}\)
    3. \( \displaystyle \lim_{x \to \infty}{\left(\sqrt{1 + x + 16x^2} - 4x\right)}\)
    Lecture Example \(\PageIndex{3}\): Evaluating Finite Limits at Infinity Graphically

    Determine the horizontal asymptote(s) for the function.

    1. \( f(x) = e^{-x} \)
    2. \( g(t) = \tanh{(t)} \)
    3. \( h(x) = 2 - 2^{1/x} \)
    Theorem \(\PageIndex{3}\)

    \[ \lim_{x \to \infty}{\tan^{−1}{(x)}} = \frac{\pi}{2}, \nonumber \]

    \[ \lim_{x \to -\infty}{\tan^{−1}{(x)}} = −\frac{\pi}{2}, \nonumber\]

    \[ \lim_{x \to \infty}{\tanh{(x)}} = 1, \nonumber\]

    \[ \lim_{x \to -\infty}{\tanh{(x)}} = -1, \text{ and }\nonumber\]

    \[ \lim_{x \to \infty}{b^{-x}} = 0, \text{ where }b \gt 1. \nonumber\]

    Revisiting the Squeeze Theorem

    Theorem \(\PageIndex{4}\): The Squeeze Theorem for Limits at Infinity

    Let \(f(x),g(x)\), and \(h(x)\) be defined for all \(x \gt a\), where \(a\) is a real number. If

    \[f(x) \leq g(x) \leq h(x) \nonumber \]

    for all \(x \gt a\) and

    \[\lim_{x \to \infty}f(x)=L=\lim_{x \to \infty}h(x) \nonumber \]

    where \(L\) is a real number, then \(\displaystyle \lim_{x \to \infty}g(x)=L.\)

    Likewise, let \(f(x),g(x)\), and \(h(x)\) be defined for all \(x \lt a\), where \(a\) is a real number. If

    \[f(x) \leq g(x) \leq h(x) \nonumber \]

    for all \(x \lt a\) and

    \[\lim_{x \to -\infty}f(x)=L=\lim_{x \to -\infty}h(x) \nonumber \]

    where \(L\) is a real number, then \(\displaystyle \lim_{x \to -\infty}g(x)=L.\)

    Lecture Example \(\PageIndex{4}\)

    Evaluate the limit.

    1. \(\displaystyle \lim_{x \to \infty}{ e^{-3x} \sin{(x)} }\).
    2. \(\displaystyle \lim_{x \to \infty}{ e^{-3x} + \sin{(x)} }\).
    3. \(\displaystyle \lim_{x \to \infty}{\dfrac{\lfloor x \rfloor}{x}}\).

    Infinite Limits at Infinity

    Definition: Infinite Limit at Infinity (Informal)

    We say a function \(f\) has an infinite limit at infinity and write

    \[\lim_{x \to \infty}f(x)=\infty. \nonumber \]

    if \(f(x)\) becomes arbitrarily large for \(x\) sufficiently large. We say a function has a negative infinite limit at infinity and write

    \[\lim_{x \to \infty}f(x)=−\infty. \nonumber \]

    if \(f(x)<0\) and \(|f(x)|\) becomes arbitrarily large for \(x\) sufficiently large. Similarly, we can define infinite limits as \(x \to −\infty.\)

    Theorem \(\PageIndex{5}\)
    • \( \displaystyle \lim_{x \to \infty} x = \infty \)
    • \( \displaystyle \lim_{x \to -\infty} x = -\infty \)
    • If \( p \gt 0 \), \( \displaystyle \lim_{x \to \infty} x^p = \infty \)
    • If \( b > 1 \), \( \displaystyle \lim_{x \to \infty} b^x = \infty. \)
    Lecture Example \(\PageIndex{5}\): Evaluating an Infinite Limit at Infinity

    Evaluate the limit.

    1. \( \lim_{x \to -\infty}{ \dfrac{2x + x^2 - x^3 + x^8}{x^5 + 8x^4 - x} } \)
    2. \( \lim_{x \to \infty}{ e^x } \)
    3. \( \lim_{x \to -\infty}{ (a x^6 + b x^{11}) }, \) where \( a, b \gt 0 \).

    This page titled 2.4: The Limit Laws - Limits at Infinity (Lecture Notes) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Roy Simpson.

    • Was this article helpful?