Skip to main content
Mathematics LibreTexts

5.4E: Exercises

  • Page ID
    128892
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In exercises 1 -13, determine a definite integral that represents the area.

    1) Region enclosed by \(r=4\)

    2) Region enclosed by \(r=3\sin \theta \)

    Answer
    \(\displaystyle\frac{9}{2} \int ^ \pi _0\sin^2 \theta \,d \theta \)

    3) Region in the first quadrant within the cardioid \(r=1+\sin \theta \)

    4) Region enclosed by one petal of \(r=8\sin(2 \theta )\)

    Answer
    \(\displaystyle\frac{3}{2} \int ^{ \pi /2}_0\sin^2(2 \theta )\,d \theta \)

    5) Region enclosed by one petal of \(r=cos(3 \theta )\)

    6) Region below the polar axis and enclosed by \(r=1−\sin \theta \)

    Answer
    \(\displaystyle\frac{1}{2} \int ^{2 \pi }_ \pi (1−\sin \theta )^2\,d \theta \)

    7) Region in the first quadrant enclosed by \(r=2−\cos \theta \)

    8) Region enclosed by the inner loop of \(r=2−3\sin \theta \)

    Answer
    \(\displaystyle \int ^{ \pi /2}_{\sin^{−1}(2/3)}(2−3\sin \theta )^2\,d \theta \)

    9) Region enclosed by the inner loop of \(r=3−4\cos \theta \)

    10) Region enclosed by \(r=1−2\cos \theta \) and outside the inner loop

    Answer
    \(\displaystyle \int ^ \pi _0(1−2\cos \theta )^2\,d \theta − \int ^{ \pi /3}_0(1−2\cos \theta )^2\,d \theta \)

    11) Region common to \(r=3\sin \theta \) and \(r=2−\sin \theta \)

    12) Region common to \(r=2\) and \(r=4\cos \theta \)

    Answer
    \(\displaystyle4 \int ^{ \pi /3}_0\,d \theta +16 \int ^{ \pi /2}_{ \pi /3}(\cos^2 \theta )\,d \theta \)

    13) Region common to \(r=3\cos \theta \) and \(r=3\sin \theta \)

    In exercises 14 -26, find the area of the described region.

    14) Enclosed by \(r=6\sin \theta \)

    Answer
    \(9 \pi \text{ units}^2\)

    15) Above the polar axis enclosed by \(r=2+\sin \theta \)

    16) Below the polar axis and enclosed by \(r=2−\cos \theta \)

    Answer
    \(\frac{9 \pi }{4}\text{ units}^2\)

    17) Enclosed by one petal of \(r=4\cos(3 \theta )\)

    18) Enclosed by one petal of \(r=3\cos(2 \theta )\)

    Answer
    \(\frac{9 \pi }{8}\text{ units}^2\)

    19) Enclosed by \(r=1+\sin \theta \)

    20) Enclosed by the inner loop of \(r=3+6\cos \theta \)

    Answer
    \(\frac{18 \pi −27\sqrt{3}}{2}\text{ units}^2\)

    21) Enclosed by \(r=2+4\cos \theta \) and outside the inner loop

    22) Common interior of \(r=4\sin(2 \theta )\) and \(r=2\)

    Answer
    \(\frac{4}{3}(4 \pi −3\sqrt{3})\text{ units}^2\)

    23) Common interior of \(r=3−2\sin \theta \) and \(r=−3+2\sin \theta \)

    24) Common interior of \(r=6\sin \theta \) and \(r=3\)

    Answer
    \(\frac{3}{2}(4 \pi −3\sqrt{3})\text{ units}^2\)

    25) Inside \(r=1+\cos \theta \) and outside \(r=\cos \theta \)

    26) Common interior of \(r=2+2\cos \theta \) and \(r=2\sin \theta \)

    Answer
    \((2 \pi −4)\text{ units}^2\)

    In exercises 27 - 30, find a definite integral that represents the arc length.

    27) \(r=4\cos \theta \) on the interval \(0 \leq \theta \leq \frac{ \pi }{2}\)

    28) \(r=1+\sin \theta \) on the interval \(0 \leq \theta \leq 2 \pi \)

    Answer
    \(\displaystyle \int ^{2 \pi }_0\sqrt{(1+\sin \theta )^2+\cos^2 \theta }\,d \theta \)

    29) \(r=2\sec \theta \) on the interval \(0 \leq \theta \leq \frac{ \pi }{3}\)

    30) \(r=e^ \theta \) on the interval \(0 \leq \theta \leq 1\)

    Answer
    \(\displaystyle\sqrt{2} \int ^1_0e^ \theta \,d \theta \)

    In exercises 31 - 35, find the length of the curve over the given interval.

    31) \(r=6\) on the interval \(0 \leq \theta \leq \frac{ \pi }{2}\)

    32) \(r=e^{3 \theta }\) on the interval \(0 \leq \theta \leq 2\)

    Answer
    \(\frac{\sqrt{10}}{3}(e^6−1)\) units

    33) \(r=6\cos \theta \) on the interval \(0 \leq \theta \leq \frac{ \pi }{2}\)

    34) \(r=8+8\cos \theta \) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(32\) units

    35) \(r=1−\sin \theta \) on the interval \(0 \leq \theta \leq 2 \pi \)

    In exercises 36 - 40, use the integration capabilities of a calculator to approximate the length of the curve.

    36) [Technology Required] \(r=3 \theta \) on the interval \(0 \leq \theta \leq \frac{ \pi }{2}\)

    Answer
    \(6.238\) units

    37) [Technology Required] \(r=\dfrac{2}{ \theta }\) on the interval \( \pi \leq \theta \leq 2 \pi \)

    38) [Technology Required] \(r=\sin^2\left(\frac{ \theta }{2}\right)\) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(2\) units

    39) [Technology Required] \(r=2 \theta ^2\) on the interval \(0 \leq \theta \leq \pi \)

    40) [Technology Required] \(r=\sin(3\cos \theta )\) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(4.39\) units

    In exercises 41 - 43, use the familiar formula from geometry to find the area of the region described and then confirm by using the definite integral.

    41) \(r=3\sin \theta \) on the interval \(0 \leq \theta \leq \pi \)

    42) \(r=\sin \theta +\cos \theta \) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(A= \pi \left(\frac{\sqrt{2}}{2}\right)^2=\dfrac{ \pi }{2}\text{ units}^2\) and \(\displaystyle\frac{1}{2} \int ^ \pi _0(1+2\sin \theta \cos \theta )\,d \theta =\frac{ \pi }{2}\text{ units}^2\)

    43) \(r=6\sin \theta +8\cos \theta \) on the interval \(0 \leq \theta \leq \pi \)

    In exercises 44 - 46, use the familiar formula from geometry to find the length of the curve and then confirm using the definite integral.

    44) \(r=3\sin \theta \) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(C=2 \pi \left(\frac{3}{2}\right)=3 \pi \) units and \(\displaystyle \int ^ \pi _03\,d \theta =3 \pi \) units

    45) \(r=\sin \theta +\cos \theta \) on the interval \(0 \leq \theta \leq \pi \)

    46) \(r=6\sin \theta +8\cos \theta \) on the interval \(0 \leq \theta \leq \pi \)

    Answer
    \(C=2 \pi (5)=10 \pi \) units and \(\displaystyle \int ^ \pi _010\,d \theta =10 \pi \) units

    47) Verify that if \(y=r\sin \theta =f( \theta )\sin \theta \) then \(\dfrac{dy}{d \theta }=f'( \theta )\sin \theta +f( \theta )\cos \theta .\)

    In exercises 48 - 56, find the slope of a tangent line to a polar curve \(r=f( \theta )\). Let \(x=r\cos \theta =f( \theta )\cos \theta \) and \(y=r\sin \theta =f( \theta )\sin \theta \), so the polar equation \(r=f( \theta )\) is now written in parametric form.

    48) Use the definition of the derivative \(\dfrac{dy}{dx}=\dfrac{dy/d \theta }{dx/d \theta }\) and the Product Rule to derive the derivative of a polar equation.

    Answer
    \(\dfrac{dy}{dx}=\dfrac{f^{\prime}( \theta )\sin \theta +f( \theta )\cos \theta }{f^{\prime}( \theta )\cos \theta −f( \theta )\sin \theta }\)

    49) \(r=1−\sin \theta ; \; \left(\frac{1}{2},\frac{ \pi }{6}\right)\)

    50) \(r=4\cos \theta ; \; \left(2,\frac{ \pi }{3}\right)\)

    Answer
    The slope is \(\frac{1}{\sqrt{3}}\).

    51) \(r=8\sin \theta ; \; \left(4,\frac{5 \pi }{6}\right)\)

    52) \(r=4+\sin \theta ; \; \left(3,\frac{3 \pi }{2}\right)\)

    Answer
    The slope is 0.

    53) \(r=6+3\cos \theta ; \; (3, \pi )\)

    54) \(r=4\cos(2 \theta );\) tips of the leaves

    Answer
    At \((4,0),\) the slope is undefined. At \(\left(−4,\frac{ \pi }{2}\right)\), the slope is 0.

    55) \(r=2\sin(3 \theta );\) tips of the leaves

    56) \(r=2 \theta ; \; \left(\frac{ \pi }{2},\frac{ \pi }{4}\right)\)

    Answer
    The slope is undefined at \( \theta =\frac{ \pi }{4}\).

    57) Find the points on the interval \(− \pi \leq \theta \leq \pi \) at which the cardioid \(r=1−\cos \theta \) has a vertical or horizontal tangent line.

    58) For the cardioid \(r=1+\sin \theta ,\) find the slope of the tangent line when \( \theta =\frac{ \pi }{3}\).

    Answer
    Slope = −1.

    In exercises 59 - 62, find the slope of the tangent line to the given polar curve at the point given by the value of \( \theta \).

    59) \(r=3\cos \theta ,\; \theta =\frac{ \pi }{3}\)

    60) \(r= \theta , \; \theta =\frac{ \pi }{2}\)

    Answer
    Slope is \(\frac{−2}{ \pi }\).

    61) \(r=\ln \theta , \; \theta =e\)

    62) [Technology Required] Use technology: \(r=2+4\cos \theta \) at \( \theta =\frac{ \pi }{6}\)

    Answer
    Calculator answer: −0.836.

    In exercises 63 - 66, find the points at which the following polar curves have a horizontal or vertical tangent line.

    63) \(r=4\cos \theta \)

    64) \(r^2=4\cos(2 \theta )\)

    Answer
    Horizontal tangent at \(\left( \pm \sqrt{2},\frac{ \pi }{6}\right), \; \left( \pm \sqrt{2},−\frac{ \pi }{6}\right)\).

    65) \(r=2\sin(2 \theta )\)

    66) The cardioid \(r=1+\sin \theta \)

    Answer
    Horizontal tangents at \(\frac{ \pi }{2},\, \frac{7 \pi }{6},\, \frac{11 \pi }{6}.\)
    Vertical tangents at \(\frac{ \pi }{6},\, \frac{5 \pi }{6}\) and also at the pole \((0,0)\).

    67) Show that the curve \(r=\sin \theta \tan \theta \) (called a cissoid of Diocles) has the line \(x=1\) as a vertical asymptote.


    This page titled 5.4E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Roy Simpson.

    • Was this article helpful?