Skip to main content
Mathematics LibreTexts

1.4: Arc Length of a Curve and Surface Area

  • Page ID
    163253
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Corequisite and Prerequisite Topics

    Corequisite Topics

    Corequisite Topics

    The following (prerequisite) topics related to the material in this section are only to be covered in a class with corequisite support. Students in a class without corequisite support are assumed to have already mastered these topics.

    • Evaluating integral functions and interpreting the meaning of such functions
    • Using the Fundamental Theorem of Calculus, Part 1 (FTC1) to compute the derivative of a definite integral with variable limits
    • Computing differentials
    • Hyperbolic functions - definitions, identities, evaluating, and graphing

    If you find yourself constantly needing to review these topics, then you might be better served in a Calculus II course with Corequisite Support.

    Learning Objectives
    • Determine the length of a curve, \(y=f(x)\), between two points.
    • Determine the length of a curve, \(x=g(y)\), between two points.
    • Find the surface area of a solid of revolution.

    Arc Length of a Curve

    Given the function \(f(x)=\sin⁡(x)\), we can compute the area under the curve, and calculate the volume if rotated about a horizontal or vertical line. We now turn our attention to the actual length of the curve on a given interval. To motivate this, let’s derive a general formula.

    Deriving the Formula

    [Deriving the arc length time]

    Theorem: Arc Length of a Curve

    Let \( f(\lambda) \) be a smooth function over the \( \lambda \) interval \([a,b]\).1 Then the arc length, \( L \), of the graph of \( f(\lambda) \) over this interval is given by\[ L = \int_{\lambda = a}^{\lambda = b} \, ds, \nonumber  \]where\[ s(k) = \int_{a}^{k} \sqrt{1 + \left[ f^{\prime}(t) \right]^2} \, dt \quad \left( \text{this is called the }\textbf{Arc Length Function} \right). \nonumber \]Therefore, \( ds \) can be written as\[ds = \sqrt{1+[f^{\prime}(x)]^2}\,dx \nonumber  \]or\[ds = \sqrt{1+[f^{\prime}(y)]^2}\,dy, \nonumber  \]depending on the given function and our needs.

    1 This means \( f^{\prime} \) is continuous on \( \left[ a,b \right] \).

    Caution: These can lead to nasty integrals

    Because the arc length function always contains radicals, finding the arc length of a curve can be difficult (or impossible) to do analytically. Therefore, numerical integration techniques are often employed.

    Computing Arc Lengths

    Lecture Example \(\PageIndex{1}\)

    Use Desmos to graph\[x^{2/3}+y^{2/3} = 1\nonumber \]and guess a value for the length of the curve. Finally, find the actual length of the curve.

    Lecture Example \(\PageIndex{2}\)

    Determine the length of\[ y= \left(\dfrac{3x}{2}\right)^{2/3}+1\nonumber \]on \(0 \leq x \leq \frac{2}{3} \left(3\right)^{3/2}\).

    Lecture Example \(\PageIndex{3}\)

    Find the length of the curve.\[ x = \dfrac{y^4}{8} + \dfrac{1}{4y^2}, \quad 1 \leq y \leq 5 \nonumber \]

    Area of a Surface of Revolution

    Given the function \(f(x)=\sin⁡(x)\), we can compute the area under the curve, calculate the volume if rotated about a horizontal or vertical line, and find the arc length of the curve on a given interval. We now focus on the surface area if we revolved the function about a horizontal or vertical line.

    Deriving the Formula

    [Deriving the surface area time]

    Theorem: Surface Area of a Surface of Revolution

    The surface area of the surface of revolution formed by revolving the graph of a smooth function about an axis is\[ S = \int_a^b 2 \pi r \, ds, \nonumber \]where \( r \) is the radius of rotation and\[ ds = \sqrt{1 + \left( f^{\prime}(x) \right)^2} \, dx \nonumber \]or\[ ds = \sqrt{1 + \left( g^{\prime}(y) \right)^2} \, dy. \nonumber \]

    A great interpretation of the surface area integral\[ \int 2 \pi r \, ds \nonumber \]is that the surface area of the \( i^{\text{th}} \) band is the product of its circumference and its width. The circumference of the band is \( 2 \pi r_i \) and its width is \( \Delta s \).

    Advice

    Surface area integrals can often be evaluated using any combination of variables; however, try not to use a variable that will not make a function.

    Note

    Since \(2 \pi r \, ds \geq 0\), we don’t have to worry about negative integrals as long as the limits of integration go from low to high.

    Computing Surface Areas

    Lecture Example \(\PageIndex{4}\)

    Approximate the surface area of the solid obtained by rotating the given function about the given line.\[f(x)=\sin⁡(x), \quad 0 \leq x \leq \pi, \quad \text{about the }x\text{-axis}\nonumber \]using \( R_4 \).

    Lecture Example \( \PageIndex{5}\)

    Determine the surface area of the solid obtained by rotating the given function about the given line.\[ y = \sqrt[3]{x}, \quad 1 \leq y \leq 2, \quad \text{about the }y\text{-axis}\nonumber \]


    This page titled 1.4: Arc Length of a Curve and Surface Area is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Roy Simpson.