Skip to main content
Mathematics LibreTexts

5.7.1: Cauchy-Euler Equations (Exercises)

  • Page ID
    108311
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In Exercises 1-40 find the general solution of the given equation on \((0,\infty)\).

    1. \(x^2y''+7xy'+8y=0\)

    2. \(x^2y''-7xy'+7y=0\)

    3. \(x^2y''-xy'+y=0\)

    4. \(x^2y''+5xy'+4y=0\)

    5. \(x^2y''+xy'+y=0\)

    6. \(x^2y''-3xy'+13y=0\)

    7. \(x^2y''+3xy'-3y=0\)

    8. \(12x^2y''-5xy''+6y=0\)

    9. \(4x^2y''+8xy'+y=0\)

    10. \(3x^2y''-xy'+y=0\)

    11. \(2x^2y''-3xy'+2y=0\)

    12. \(x^2y''+3xy'+5y=0\)

    13. \(9x^2y''+15xy'+y=0\)

    14. \(x^2y''-xy'+10y=0\)

    15. \(x^2y''-6y=0\)

    16. \(2x^2y''+3xy'-y=0\)

    17. \(x^2y''-3xy'+4y=0\)

    18. \(2x^2y''+10xy'+9y=0\)

    19. \(x^2y''-2y=0\)

    20. \(xy''+y'=0\)

    21. \(x^2y''+xy'+4y=0\)

    22. \(x^{2} y^{\prime \prime}-3 x y^{\prime}-2 y=0\)

    23. \(25x^2y''+25xy'+y=0\)

    24. \(x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0\)

    25. \(3x^2y''+6xy'+y=0\)

    26. \(x^{2} y^{\prime \prime}+3 x y^{\prime}-3 y=0\)

    27. \(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0\)

    28. \(4 x^{2} y^{\prime \prime}+y=0\)

    29. \(xy''-4y'=x^4\)

    30. \(x^2y''-xy'+y=2x\)

    31. \(x^{2} y^{\prime \prime}- x y^{\prime}-3 y=2 x^{2}\)

    32. \(x^{2} y^{\prime \prime}- x y^{\prime}-3 y=2 x^{3}\)

    33. \(x^2y''-4xy'+6y=2x^4+x^2\)

    34. \(x^2y''-3xy'+3y=2x^4e^x\)

    35. \(x^2y''-xy'+y=\ln x\)

    36. \(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}+x\)

    37. \(x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=2 x^{3}\)

    38. \(x^2y''+10xy'+8y=x^2\)

    39. \(x^2y''-4xy'+6y=\ln x^2\)

    40. \(x^2y''-3xy'+13y=4+3x\)

    In Exercises 41-49 find the solution of the given initial value problem on \((0,\infty)\).

    41. \(x^2y''+3xy'=0; \quad y(1)=0, \quad y'(1)=4\)

    42. \(x^2y''-5xy'+8y=0; \quad y(2)=32, \quad y'(2)=0\)

    43. \(x^2y''+xy'+y=0; \quad y(1)=1, \quad y'(1)=2\)

    44. \(x^2y''-3xy'+4y=0; \quad y(1)=5, \quad y'(1)=3\)

    45. \(x^2y''+3xy'+y=0; \quad y(1)=0, \quad y'(1)=1\)

    46. \(xy''+y'=x; \quad y(1)=1, \quad y'(1)=-1/2\)

    47. \(x^2y''-5xy'+8y=8x^6; \quad y({1\over 2})=0, \quad y'({1\over 2})=0\)

    48. \(x^2y''-3xy'+3y=2x^4e^x; \quad y(1)=0, \quad y'(1)=0\)

    49. \(x^2y''-xy'+y=\ln x; \quad y(1)=2, \quad y'(1)=2\)

    50. Prove that if \(y=y(x)\) satisfies the Cauchy-Euler equation \[ax^2{d^2y\over dx^2}+bx{dy\over dx}+cy=0\tag{A}\] on \((0,\infty)\) then \(y=y(t)\), where \(t=-x\), satisfies A on \((-\infty,0)\).

    In Exercises 51-52 find the solution of the given initial value problem on \((-\infty,0)\).

    51. \(4x^2y''+y=0; \quad y(-1)=2, \quad y'(-1)=4\)

    52. \(x^2y''-4xy'+6y=0; \quad y(-2)=8, \quad y'(-2)=0\)

    53. A nontrivial solution of

    \[P_0(x)y''+P_1(x)y'+P_2(x)y=0\nonumber\]

    is said to be oscillatory on an interval \((a,b)\) if it has infinitely many zeros on \((a,b)\). Otherwise \(y\) is said to be nonoscillatory on \((a,b)\). Prove that the equation

    \[x^2y''+ky=0 \quad (k=\; \mbox{constant})\nonumber\]

    has oscillatory solutions on \((0,\infty)\) if and only if \(k>1/4\).


    This page titled 5.7.1: Cauchy-Euler Equations (Exercises) is shared under a CC BY-NC-SA 1.3 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.