7.2.1: Higher Order Homogeneous Equations (Exercises)
- Page ID
- 103558
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises 1-14 find the general solution.
1. \(y'''-3y''+3y'-y=0\)
2. \(y^{(4)}+8y''-9y=0\)
3. \(y'''-y''+16y'-16y=0\)
4. \(2y'''+3y''-2y'-3y=0\)
5. \(y'''+5y''+9y'+5y=0\)
6. \(4y'''-8y''+5y'-y=0\)
7. \(27y'''+27y''+9y'+y=0\)
8. \(y^{(4)}+y''=0\)
9. \(y^{(4)}-16y=0\)
10. \(y^{(4)}+12y''+36y=0\)
11. \(16y^{(4)}-72y''+81y=0\)
12. \(6y^{(4)}+5y'''+7y''+5y'+y=0\)
13. \(4y^{(4)}+12y'''+3y''-13y'-6y=0\)
14. \(y^{(4)}-4y'''+7y''-6y'+2y=0\)
In Exercises 15-27 solve the initial value problem.
15. \(y'''-2y''+4y'-8y=0, \quad y(0)=2,\quad y'(0)=-2,\; y''(0)=0\)
16. \(y'''+3y''-y'-3y=0, \quad y(0)=0,\quad y'(0)=14,\quad y''(0)=-40\)
17. \(y'''-y''-y'+y=0, \quad y(0)=-2,\quad y'(0)=9,\quad y''(0)=4\)
18. \(y'''-2y'-4y=0, \quad y(0)=6,\quad y'(0)=3,\quad y''(0)=22\)
19. \(3y'''-y''-7y'+5y=0, \quad y(0)= \frac{14}{5},\quad y'(0)=0,\quad y''(0)=10\)
20. \(y'''-6y''+12y'-8y=0, \quad y(0)=1,\quad y'(0)=-1,\quad y''(0)=-4\)
21. \(2y'''-11y''+12y'+9y=0, \quad y(0)=6,\quad y'(0)=3,\quad y''(0)=13\)
22. \(8y'''-4y''-2y'+y=0, \quad y(0)=4,\quad y'(0)=-3,\quad y''(0)=-1\)
23. \(y^{(4)}-16y=0, \quad y(0)=2,\; y'(0)=2,\; y''(0)=-2,\; y'''(0)=0\)
24. \(y^{(4)}-6y'''+7y''+6y'-8y=0, \quad y(0)=-2,\quad y'(0)=-8,\quad y''(0)=-14,\quad y'''(0)=-62\)
25. \(4y^{(4)}-13y''+9y=0, \quad y(0)=1,\quad y'(0)=3,\quad y''(0)=1,\quad y'''(0)=3\)
26. \(y^{(4)}+2y'''-2y''-8y'-8y=0, \quad y(0)=5,\quad y'(0)=-2,\quad y''(0)=6,\quad y'''(0)=8\)
27. \(4y^{(4)}+8y'''+19y''+32y'+12y=0, \quad y(0)=3,\quad y'(0)=-3,\quad y''(0)= -\frac{7}{2},\quad y'''(0)=\frac{31}{4}\)
In Exercises 28-33 find a fundamental set of solutions of the given equation, and verify that it is a fundamental set by evaluating its Wronskian. Form the general solution.
28. \((D-1)^2(D-2)y=0\)
29. \((D^2+4)(D-3)y=0\)
30. \((D^2+2D+2)(D-1)y=0\)
31. \(D^3(D-1)y=0\)
32. \((D^2-1)(D^2+1)y=0\)
33. \((D^2-2D+2)(D^2+1)y=0\)
In Exercises 34-43 find a fundamental set of solutions and form the general solution.
34. \((D^2+6D+13)(D-2)^2D^3y=0\)
35. \((D-1)^2(2D-1)^3(D^2+1)y=0\)
36. \((D^2+9)^3D^2y=0\)
37. \((D-2)^3(D+1)^2Dy=0\)
38. \((D^2+1)(D^2+9)^2(D-2)y=0\)
39. \((D^4-16)^2y=0\)
40. \((4D^2+4D+9)^3y=0\)
41. \(D^3(D-2)^2(D^2+4)^2y=0\)
42. \((4D^2+1)^2(9D^2+4)^3y=0\)
In Exercises 43-48 find the general solution on \((0,\infty)\)
43. \(x^3y'''+5x^2y''+7xy'+8y=0\)
44. \(x^3y'''-6y=0\)
45. \(x^3y'''+xy'-y=0\)
46. \(xy^{(4)}+6y'''=0\)
47. \(x^4y^{(4)}+6x^3y'''+9x^2y''+3xy'+y=0\)
48. \(x^3y'''-3x^2y''+6xy'-6y=0\)