Skip to main content
Mathematics LibreTexts

4.7: Dividing Polynomials

  • Page ID
    113695
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Learning Objective

    • Divide by a monomial.

    Dividing by a Monomial

    Recall the quotient rule for exponents: if \(x\) is nonzero and \(m\) and \(n\) are positive integers, then

    \[\frac{x^{m}}{x^{n}}=x^{m-n}\]

    In other words, when dividing two expressions with the same base, subtract the exponents. This rule applies when dividing a monomial by a monomial. In this section, we will assume that all variables in the denominator are nonzero.

    Example \(\PageIndex{1}\)

    Divide:

    \(\frac{28y^{3}}{7y}\).

    Solution:

    Divide the coefficients and subtract the exponents of the variable \(y\).

    \(\begin{aligned} \frac{28y^{3}}{7y}&=\frac{28}{7}y^{3-1} \\ &=4y^{2} \end{aligned}\)

    Answer:

    \(4y^{2}\)

    Example \(\PageIndex{2}\)

    Divide:

    \(\frac{24x^{7}y^{5}}{8x^{3}y^{2}}\).

    Solution:

    Divide the coefficients and apply the quotient rule by subtracting the exponents of the like bases.

    \(\begin{aligned} \frac{24x^{7}y^{5}}{8x^{3}y^{2}}&=\frac{24}{8}x^{7-3}y^{5-2} \\ &=3x^{4}y^{3} \end{aligned}\)

    Answer:

    \(3x^{4}y^{3}\)

    When dividing a polynomial by a monomial, we may treat the monomial as a common denominator and break up the fraction using the following property:

    \[\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}\]

    Applying this property results in terms that can be treated as quotients of monomials.

    Example \(\PageIndex{3}\)

    Divide:

    \(\frac{−5x^{4}+25x^{3}−15x^{2}}{5x^{2}}\).

    Solution:

    Break up the fraction by dividing each term in the numerator by the monomial in the denominator and then simplify each term.

     

    Answer:

    \(-x^{2}+5x-3\cdot 1\)

    Check your division by multiplying the answer, the quotient, by the monomial in the denominator, the divisor, to see if you obtain the original numerator, the dividend.

    \[\color{Cerulean}{\frac{dividend}{divisor}=quotient}\]

    \(or\)

    \[\color{Cerulean}{dividend=divisor\cdot quotient}\]

    \(\begin{aligned} 5x^{2}\cdot (-x^{2}+5x-3) &=\color{Cerulean}{5x^{2}}\color{black}{\cdot (-x^{2})+}\color{Cerulean}{5x^{2}}\color{black}{\cdot 5x-}\color{Cerulean}{5x^{2}}\color{black}{\cdot 3} \\ &=-5x^{4}+25x^{3}-15x^{2}\quad\color{Cerulean}{\checkmark} \end{aligned}\)

    Example \(\PageIndex{4}\)

    Divide:

    \(\frac{9a^{4}b−7a^{3}b^{2}+3a^{2}b}{−3a^{2}b}\).

    Solution:

     

    Answer:

    \(-3a^{2}+\frac{7}{3}ab-1\). The check is optional and is left to the reader.

    Exercise \(\PageIndex{1}\)

    \((16x^{5}−8x^{4}+5x^{3}+2x^{2})÷(2x^{2})\).

    Answer

    \(8x^{3}−4x^{2}+\frac{5}{2}x+1\)

    Key Takeaways

    • When dividing by a monomial, divide all terms in the numerator by the monomial and then simplify each term. To simplify each term, divide the coefficients and apply the quotient rule for exponents.

    Exercise \(\PageIndex{3}\) Dividing by a Monomial

    Divide.

    1. \(\frac{81y^{5}}{9y^{2}}\)
    2. \(\frac{36y^{9}}{9y^{3}}\)
    3. \(\frac{52x^{2}y}{4xy}\)
    4. \(\frac{24xy^{5}}{2xy^{4}}\)
    5. \(\frac{25x^{2}y^{5}z^{3}}{5xyz}\)
    6. \(\frac{−77x^{4}y^{9}z^{2}}{2x^{3}y^{3}z}\)
    7. \(\frac{125a^{3}b^{2}c}{−10abc}\)
    8. \(\frac{36a^{2}b^{3}c^{5}}{−6a^{2}b^{2}c^{3}}\)
    9. \(\frac{9x^{2}+27x−3}{3}\)
    10. \(\frac{10x^{3}−5x^{2}+40x−15}{5}\)
    11. \(\frac{20x^{3}−10x^{2}+30x}{2x}\)
    12. \(\frac{10x^{4}+8x^{2}−6x}{24x}\)
    13. \(\frac{−6x^{5}−9x^{3}+3x}{−3x}\)
    14. \(\frac{36a^{12}−6a^{9}+12a^{5}}{−12a^{5}}\)
    15. \(\frac{−12x^{5}+18x^{3}−6x^{2}}{−6x^{2}}\)
    16. \(\frac{−49a^{8}+7a^{5}−21a^{3}}{7a^{3}}\)
    17. \(\frac{9x^{7}−6x^{4}+12x^{3}−x^{2}}{3x^{2}}\)
    18. \(\frac{8x^{9}+16x^{7}−24x^{4}+8x^{3}}{−8x^{3}}\)
    19. \(\frac{16a^{7}−32a^{6}+20a^{5}−a^{4}}{4a^{4}}\)
    20. \(\frac{5a^{6}+2a^{5}+6a^{3}−12a^{2}}{3a^{2}}\)
    21. \(\frac{−4x^{2}y^{3}+16x^{7}y^{8}−8x^{2}y^{5}}{−4x^{2}y^{3}}\)
    22. \(\frac{100a^{10}b^{30}c^{5}−50a^{20}b^{5}c^{40}+20a^{5}b^{20}c^{10}}{10a^{5}b^{5}c^{5}}\)
    23. Find the quotient of \(−36x^{9}y^{7}\) and \(2x^{8}y^{5}\).
    24. Find the quotient of \(144x^{3}y^{10}z^{2}\) and \(−12x^{3}y^{5}z\).
    25. Find the quotient of \(3a^{4}−18a^{3}+27a^{2}\) and \(3a^{2}\).
    26. Find the quotient of \(64a^{2}bc^{3}−16a^{5}bc^{7}\) and \(4a^{2}bc^{3}\).
    Answer

    1. \(9y^{3}\)

    3. \(13x\)

    5. \(5xy^{4}z^{2}\)

    7. \(−\frac{25}{2}a^{2}b\)

    9. \(3x^{2}+9x−1\)

    11. \(10x^{2}−5x+15\)

    13. \(2x^{4}+3x^{2}−1\)

    15. \(2x^{3}−3x+1\)

    17. \(3x^{5}−2x^{2}+4x−\frac{1}{3}\)

    19. \(4a^{3}−8a^{2}+5a−\frac{1}{4}\)

    21. \(−4x^{5}y^{5}+2y^{2}+1\)

    23. \(−18xy^{2}\)

    25. \(a^{2}−6a+9\)


    4.7: Dividing Polynomials is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?