Use the coefficients of a quadratic equation to help decide which method is most appropriate for solving it. While the quadratic formula always works, it is sometimes not the most efficient method. If given any quadratic equation in standard form,
where \(c=0\), then it is best to factor out the GCF and solve by factoring.
If \(b=0\), then we can solve by extracting the roots.
It is good to know that the quadratic formula will work to find the solutions to all of the examples in this section. However, it is not always the best solution. If the equation can be solved by factoring or by extracting the roots, you should use that method.
In this section we outline an algebraic technique that is used extensively in mathematics to transform equations into familiar forms. We begin by defining quadratic form7,
\(a u^{2}+b u+c=0\)
Here \(u\) represents an algebraic expression. Some examples follow:
\(\begin{aligned}\left(\frac{t+2}{t}\right)^{2}+8\left(\frac{t+2}{t}\right)+7&=0 \stackrel{u=\frac{t+2}{t}}{\color{Cerulean}{\Longrightarrow}} \color{black}{u^{2}}+8 u+7=0 \\ x^{2 / 3}-3 x^{1 / 3}-10&=0 \stackrel{u=x^{1 / 3}}{\color{Cerulean}{\Longrightarrow}}\color{black}{ u^{2}}-3 u-10=0 \\ 3 y^{-2}+7 y^{-1}-6&=0 \stackrel{u=y^{-1}}{\color{Cerulean}{\Longrightarrow}}\color{black}{ 3 u^{2}}+7 u-6=0\end{aligned}\)
If we can express an equation in quadratic form, then we can use any of the techniques used to solve quadratic equations. For example, consider the following fourth-degree polynomial equation,
\(x^{4}-4 x^{2}-32=0\)
If we let \(u = x^{2}\) then \(u^{2} = \left(x^{2}\right)^{2}=x^{4}\) and we can write
\(\begin{array}{r}{x^{4}-4 x^{2}-32=0 \color{Cerulean}{\Rightarrow}\left(\color{Cerulean}{x^{2}}\right)^{\color{black}{2}}-4\left(\color{Cerulean}{x^{2}}\right)\color{black}{-}32=0} \\ \color{Cerulean}{\downarrow\quad\quad\:\:\: \downarrow\quad\quad\quad\quad\:\:} \\ {u^{2}\quad-\:\:4 u\:\:-32=0}\end{array}\)
This substitution transforms the equation into a familiar quadratic equation in terms of \(u\) which, in this case, can be solved by factoring.
\(\begin{aligned} u^{2}-4 u-32 &=0 \\(u-8)(u+4) &=0 \\ u=8 \quad \text { or } \quad u &=-4 \end{aligned}\)
Since \(u=x^{2}\) we can back substitute and then solve for \(x\).
\(\begin{aligned} &u=8 \quad \text{or} &u=-4 \\ & \color{Cerulean}{\downarrow}&\color{Cerulean}{ \downarrow} \\ &x^{2}=8 & x^{2}=-4\\ &x=\pm \sqrt{8} &x=\pm\sqrt{-4} \\ &x=\pm 2 \sqrt{2} &x=\pm2i\end{aligned}\)
Therefore, the equation \(x^{4}-4 x^{2}-32=0\) has four solutions \(\{\pm 2 \sqrt{2}, \pm 2 i\}\), two real and two complex. This technique, often called a u-substitution8, can also be used to solve some non-polynomial equations.
Example \(\PageIndex{4}\):
Solve: \(x-2 \sqrt{x}-8=0\).
Solution
This is a radical equation that can be written in quadratic form. If we let \(u=\sqrt{x}\) then \(u^{2}=(\sqrt{x})^{2}=x\) and we can write
\(\begin{aligned}x-2 \sqrt{x}-8&=0\\ \color{Cerulean}{\downarrow\:\:\quad \downarrow\quad\:\:\:\:} \\ u^{2}\:\:-2 u-8&=0\end{aligned}\)
Solve for \(u\).
\(u^{2}-2 u-8=0 \)
\((u-4)(u+2)=0 \)
\(u=4\) or \(u=-2 \)
Back substitute \(u=\sqrt{x}\) and solve for \(x\).
\(\begin{array}{c}{\sqrt{x}=4 \quad \text { or } \quad \sqrt{x}=-2} \\ {(\sqrt{x})^{2}=(4)^{2} \quad(\sqrt{x})^{2}=(-2)^{2}} \\ {x=16} \quad\quad\quad\quad {x=4}\end{array}\)
Recall that squaring both sides of an equation introduces the possibility of extraneous solutions. Therefore we must check our potential solutions.
\(\begin{array}{r | l} {\color{OliveGreen}{Check} \:\color{black}{x=16}} & {\color{OliveGreen}{Check}\:\color{black}{x}=4}\\ {x-2\sqrt{x}-8=0} & {x-2\sqrt{x}-8=0} \\ {\color{OliveGreen}{16}\color{black}{-} 2\sqrt{\color{OliveGreen}{16}}\color{black}{-}18=0} & {\color{OliveGreen}{4}\color{black}{-} 2\sqrt{\color{OliveGreen}{4}}\color{black}{-}8=0} \\{16-2 \cdot 4-8=0} & {4-2 \cdot 2-8=0} \\ {16-8-8=0} & {\quad\:4-4-8=0} \\ {0=0 \color{Cerulean}{✓}} & {\quad\quad\quad\:\:-8=0 \color{red}{✗}}\end{array}\)
Because \(x=4\) is extraneous, there is only one solution, \(x=16\).
Answer
The solution is \(16\).
Example \(\PageIndex{5}\):
Solve: \(x^{2 / 3}-3 x^{1 / 3}-10=0\).
Solution
If we let \(u=x^{1 / 3}\) then \(u^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}\) and we can write
\(\begin{array}{c}{x^{2 / 3}-3 x^{1 / 3}-10=0} \\ \color{Cerulean}{\downarrow \quad\quad\downarrow\:\:\quad\quad\quad\quad\:} \\ {u^{2}\:\:\:-\:3 u-10=0}\end{array}\)
Solve for \(u\).
\(u^{2}-3 u-10=0 \)
\((u-5)(u+2)=0 \)
\(u=5 \quad\) or \(\quad u=-2 \)
Back substitute \(u=x^{1 / 3}\) and solve for \(x\).
\(\begin{aligned} x^{1 / 3} &=5 \quad \text { or } \quad x^{1 / 3}=-2 \\\left(x^{1 / 3}\right)^{3} &=(5)^{3} \quad\left(x^{1 / 3}\right)^{3}=(-2)^{3} \\ x &=125 \quad\quad\quad\:\:\: x=-8 \end{aligned}\)
Check
\(\begin{array} {r|r} {\color{OliveGreen}{Check}\:\color{black}{x}=125}&{\color{OliveGreen}{Check}\:\color{black}{x}=-8}\\{x^{2/3} - 3x^{1/3} -10=0 }&{x^{2/3}-3x^{1/3}-10=0} \\{(\color{OliveGreen}{125}\color{black}{)}^{2 / 3}-3(\color{OliveGreen}{125}\color{black}{)}^{1 / 3}-10=0} & {(\color{OliveGreen}{-8}\color{black}{)}^{2 / 3}-3(\color{OliveGreen}{-8}\color{black}{)}^{1 / 3}-10=0} \\ {\left(5^{3}\right)^{2 / 3}-3\left(5^{3}\right)^{1 / 3}-10=0} &{\left[(-2)^{3}\right]^{2 / 3}-3\left[(-2)^{3}\right]^{1 / 3}-10=0} \\ {5^{2}-3 \cdot 5-10=0} &{(-2)^{2}-3 \cdot(-2)-10=0}\\ {25-15-10=0}&{\quad\quad\quad\quad\:\:\:4+6-10=0} \\ {0=0 \color{Cerulean}{✓}}&{\quad\quad\quad\quad\quad\quad\quad\quad\:\:\:0=0\color{Cerulean}{✓}} \end{array}\)
Answer
The solutions are \(-8,125\).
Example \(\PageIndex{6}\):
Solve: \(3 y^{-2}+7 y^{-1}-6=0\)
Solution
If we let \(u=y^{-1}\), then \(u^{2}=\left(y^{-1}\right)^{2}=y^{-2}\) and we can write
\(\begin{array}{c}{3 y^{-2}+7 y^{-1}-6=0} \\ \color{Cerulean}{\downarrow \quad\:\:\:\:\:\downarrow\quad\quad\:\:\:\;\:} \\ {3 u^{2}+7 u-6=0}\end{array}\)
Solve for \(u\).
\(3 u^{2}+7 u-6=0 \)
\((3 u-2)(u+3)=0 \)
\(u=\frac{2}{3} \quad\) or \(\quad u=-3 \)
Back substitute \(u=y^{-1}\) and solve for \(y\).
\(\begin{aligned} y^{-1} &=\frac{2}{3} \text { or } y^{-1}=-3 \\ \frac{1}{y} &=\frac{2}{3} \quad \quad\frac{1}{y}=-3 \\ y &=\frac{3}{2} \quad\quad y=-\frac{1}{3} \end{aligned}\)
The original equation is actually a rational equation where \(y ≠ 0\). In this case, the solutions are not restrictions; they solve the original equation.
Answer
The solutions are \(-\frac{1}{3}, \frac{3}{2}\).
Example \(\PageIndex{7}\):
Solve: \(\left(\frac{t+2}{t}\right)^{2}+8\left(\frac{t+2}{t}\right)+7=0\)
Solution
If we let \(u=\frac{t+2}{t}\), then \(u^{2}=\left(\frac{t+2}{t}\right)^{2}\) and we can write
\(\begin{array}{c}{\left(\frac{t+2}{t}\right)^{2}+8\left(\frac{t+2}{t}\right)+7=0}\\ \color{Cerulean}{\downarrow \quad\quad\:\:\;\:\downarrow\quad\quad\quad\quad} \\ {u^{2}+\quad 8 u \quad+7=0}\end{array}\)
Solve for \(u\).
\(u^{2}+8 u+7=0 \)
\((u+1)(u+7)=0 \)
\(u=-1 \quad\) or \(\quad u=-7 \)
Back substitute \(u=\frac{t+2}{t}\), and solve for \(t\).
\(\begin{array}{rl}{\frac{t+2}{t}} & {=-1 \text { or } \frac{t+2}{t}=-7} \\ {t+2} & {=-t \quad t+2=-7 t} \\ {2 t} & {=-2 \quad \quad 8 t=-2} \\ {t} & {=-1} & {t=-\frac{1}{4}}\end{array}\)
Answer
The solutions are \(-1, -\frac{1}{4}\). The check is left to the reader.
Exercise \(\PageIndex{1}\)
Solve: \(12 x^{-2}-16 x^{-1}+5=0\)
- Answer
-
The solutions are \(\frac{6}{5}, 2 \).
www.youtube.com/v/pAuR53nLNDo
So far all of the examples were of equations that factor. As we know, not all quadratic equations factor. If this is the case, we use the quadratic formula.
Example \(\PageIndex{8}\):
Solve \(x^{4}-10 x^{2}+23=0\). Approximate to the nearest hundredth.
Solution
If we let \(u=x^{2}\), then \(u^{2}=\left(x^{2}\right)^{2}=x^{4}\) and we can write
\(\begin{array}{l}{x^{4}-10 x^{2}+23=0}\\ \color{Cerulean}{\downarrow \quad\:\:\: \downarrow} \\ {u^{2}-10 u+23=0}\end{array}\)
This equation does not factor; therefore, use the quadratic formula to find the solutions for \(u\). Here \(a = 1, b = −10\), and \(c = 23\).
\(\begin{aligned} u &=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ &=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(23)}}{2(1)} \\ &=\frac{10 \pm \sqrt{8}}{2} \\ &=\frac{10 \pm 2 \sqrt{2}}{2} \\ &=5 \pm \sqrt{2} \end{aligned}\)
Therefore, \(u=5\pm\sqrt{2}\). Now back substitute \(u=x^{2}\) and solve for \(x\).
\(\begin{array}{c}{u=5-\sqrt{2} \quad \text { or } \quad u=5+\sqrt{2}}\\\color{Cerulean}{\downarrow\quad\quad\quad\quad\quad\quad\quad\downarrow\quad\quad\quad\quad} \\ {x^{2}=5-\sqrt{2} \quad\quad\:\:\: x^{2}=5+\sqrt{2}} \\ {x=\pm \sqrt{5-\sqrt{2}} \quad\quad\: x=\pm \sqrt{5+\sqrt{2}}}\end{array}\)
Round the four solutions as follows.
\(x=-\sqrt{5-\sqrt{2}} \approx-1.89 x=-\sqrt{5+\sqrt{2}} \approx-2.53 \)
\(x=\sqrt{5-\sqrt{2}} \approx 1.89 \quad x=\sqrt{5+\sqrt{2}} \approx 2.53 \)
Answer
The solutions are approximately \(\pm 1.89, \pm 2.53\).
If multiple roots and complex roots are counted, then the fundamental theorem of algebra9 implies that every polynomial with one variable will have as many roots as its degree. For example, we expect \(f (x) = x^{3} − 8\) to have three roots. In other words, the equation
\(x^{3}-8=0\)
should have three solutions. To find them one might first think of trying to extract the cube roots just as we did with square roots,
\(\begin{aligned} x^{3}-8 &=0 \\ x^{3} &=8 \\ x &=\sqrt[3]{8} \\ x &=2 \end{aligned}\)
As you can see, this leads to one solution, the real cube root. There should be two others; let’s try to find them.
Example \(\PageIndex{9}\):
Find the set of all roots: \(f(x)=x^{3}-8\).
Solution
Notice that the expression \(x^{3}-8\) is a difference of cubes and recall that \(a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\). Here \(a=x\) and \(b=2\) and we can write
\(\begin{aligned} x^{3}-8 &=0 \\(x-2)\left(x^{2}+2 x+4\right) &=0 \end{aligned}\)
Next apply the zero-product property and set each factor equal to zero. After setting the factors equal to zero we can then solve the resulting equation using the appropriate methods.
\(\begin {array}{l r}{ x-2=0}&{ \:\text{or}\quad\:x^{2}+2x+4=0}\\ {x=2}&{\begin{aligned} x &=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ &=\frac{-(2) \pm \sqrt{b^{2}-4 a c}}{2 a} \\ &=\frac{-2 \pm \sqrt{-12}}{2} \\ &=\frac{-2 \pm 2 i \sqrt{3}}{2} \\ &=-1 \pm i \sqrt{3} \end{aligned}} \end{array}\)
Using this method, we were able to obtain the set of all three roots \(\{2,-1 \pm i \sqrt{3}\}\), one real and two complex.
Answer
\(\{2,-1 \pm i \sqrt{3}\}\)
Sometimes the roots of a function will occur multiple times. For example, \(g (x) = (x − 2)^{3}\) has degree three where the roots can be found as follows:
\((x-2)^{3}=0 \)
\((x-2)(x-2)(x-2)=0 \)
\(\begin{array}{c}{x-2=0 \text { or } x-2=0 \text { or } x-2=0} \\ {\quad\quad x=2\quad\quad\quad x=2 \quad\quad\quad x=2}\end{array}\)
Even though \(g\) is of degree \(3\) there is only one real root \(\{2\}\); it occurs \(3\) times.