Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.4E: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. True or False? If vector field F is conservative on the open and connected region D, then line integrals of F are path independent on D, regardless of the shape of D.

Answer
True

2. True or False? Function r(t)=a+t(ba), where 0t1, parameterizes the straight-line segment from a to b.

Answer
True

3. True or False? Vector field F(x,y,z)=(ysinz)ˆi+(xsinz)ˆj+(xycosz)ˆk is conservative.

Answer
True

4. True or False? Vector field F(x,y,z)=yˆi+(x+z)ˆjyˆk is conservative.

5. Justify the Fundamental Theorem of Line Integrals for CF·dr in the case when F(x,y)=(2x+2y)ˆi+(2x+2y)ˆj and C is a portion of the positively oriented circle x2+y2=25 from (5,0) to (3,4).

Answer
CF·dr=24 units of work

6. [T] Find CF·dr, where F(x,y)=(yexy+cosx)ˆi+(xexy+1y2+1)ˆj and C is a portion of curve y=sinx from x=0 to x=\frac{π}{2}.

7. [T] Evaluate line integral \displaystyle \int _C\vecs F·d\vecs r, where \vecs{F}(x,y)=(e^x\sin y−y)\,\mathbf{\hat i}+(e^x\cos y−x−2)\,\mathbf{\hat j}, and C is the path given by \vecs r(t)=(t^3\sin\frac{πt}{2})\,\mathbf{\hat i}−(\frac{π}{2}\cos(\frac{πt}{2}+\frac{π}{2}))\,\mathbf{\hat j} for 0≤t≤1.

CNX_Calc_Figure_16_03_201.jpg

Answer
\displaystyle \int _C\vecs F·d\vecs r=\left(e−\frac{3π}{2}\right) units of work

For the following exercises, determine whether the vector field is conservative and, if it is, find the potential function.

8. \vecs{F}(x,y)=2xy^3\,\mathbf{\hat i}+3y^2x^2\,\mathbf{\hat j}

9. \vecs{F}(x,y)=(−y+e^x\sin y)\,\mathbf{\hat i}+((x+2)e^x\cos y)\,\mathbf{\hat j}

Answer
Not conservative

10. \vecs{F}(x,y)=(e^{2x}\sin y)\,\mathbf{\hat i}+(e^{2x}\cos y)\,\mathbf{\hat j}

11. \vecs{F}(x,y)=(6x+5y)\,\mathbf{\hat i}+(5x+4y)\,\mathbf{\hat j}

Answer
Conservative, f(x,y)=3x^2+5xy+2y^2+k

12. \vecs{F}(x,y)=(2x\cos(y)−y\cos(x))\,\mathbf{\hat i}+(−x^2\sin(y)−\sin(x))\,\mathbf{\hat j}

13. \vecs{F}(x,y)=(ye^x+\sin(y))\,\mathbf{\hat i}+(e^x+x\cos(y))\,\mathbf{\hat j}

Answer
Conservative, f(x,y)=ye^x+x\sin(y)+k

For the following exercises, evaluate the line integrals using the Fundamental Theorem of Line Integrals.

14. \displaystyle ∮_C(y\,\mathbf{\hat i}+x\,\mathbf{\hat j})·d\vecs r, where C is any path from (0, 0) to (2, 4)

15. \displaystyle ∮_C(2y\,dx+2x\,dy), where C is the line segment from (0, 0) to (4, 4)

Answer
\displaystyle ∮_C(2y\,dx+2x\,dy)=32 units of work

16. [T] \displaystyle ∮_C\left[\arctan\dfrac{y}{x}−\dfrac{xy}{x^2+y^2}\right]\,dx+\left[\dfrac{x^2}{x^2+y^2}+e^{−y}(1−y)\right]\,dy, where C is any smooth curve from (1, 1) to (−1,2).

17. Find the conservative vector field for the potential function f(x,y)=5x^2+3xy+10y^2.

Answer
\vecs{F}(x,y)=(10x+3y)\,\mathbf{\hat i}+(3x+20y)\,\mathbf{\hat j}

For the following exercises, determine whether the vector field is conservative and, if so, find a potential function.

18. \vecs{F}(x,y)=(12xy)\,\mathbf{\hat i}+6(x^2+y^2)\,\mathbf{\hat j}

19. \vecs{F}(x,y)=(e^x\cos y)\,\mathbf{\hat i}+6(e^x\sin y)\,\mathbf{\hat j}

Answer
\vecs F is not conservative.

20. \vecs{F}(x,y)=(2xye^{x^2y})\,\mathbf{\hat i}+6(x^2e^{x^2y})\,\mathbf{\hat j}

21. \vecs F(x,y,z)=(ye^z)\,\mathbf{\hat i}+(xe^z)\,\mathbf{\hat j}+(xye^z)\,\mathbf{\hat k}

Answer
\vecs F is conservative and a potential function is f(x,y,z)=xye^z+k.

22. \vecs F(x,y,z)=(\sin y)\,\mathbf{\hat i}−(x\cos y)\,\mathbf{\hat j}+\,\mathbf{\hat k}

23. \vecs F(x,y,z)=\dfrac{1}{y}\,\mathbf{\hat i}-\dfrac{x}{y^2}\,\mathbf{\hat j}+(2z−1)\,\mathbf{\hat k}

Answer
\vecs F is conservative and a potential function is f(x,y,z)=\dfrac{x}{y}+z^2-z+k.

24. \vecs F(x,y,z)=3z^2\,\mathbf{\hat i}−\cos y\,\mathbf{\hat j}+2xz\,\mathbf{\hat k}

25. \vecs F(x,y,z)=(2xy)\,\mathbf{\hat i}+(x^2+2yz)\,\mathbf{\hat j}+y^2\,\mathbf{\hat k}

Answer
\vecs F is conservative and a potential function is f(x,y,z)=x^2y+y^2z+k.

For the following exercises, determine whether the given vector field is conservative and find a potential function.

26. \vecs{F}(x,y)=(e^x\cos y)\,\mathbf{\hat i}+6(e^x\sin y)\,\mathbf{\hat j}

27. \vecs{F}(x,y)=(2xye^{x^2y})\,\mathbf{\hat i}+(x^2e^{x^2y})\,\mathbf{\hat j}

Answer
\vecs F is conservative and a potential function is f(x,y)=e^{x^2y}+k

For the following exercises, evaluate the integral using the Fundamental Theorem of Line Integrals.

28. Evaluate \displaystyle \int _C\vecs ∇f·d\vecs r, where f(x,y,z)=\cos(πx)+\sin(πy)−xyz and C is any path that starts at (1,12,2) and ends at (2,1,−1).

29. [T] Evaluate \displaystyle \int _C\vecs ∇f·d\vecs r, where f(x,y)=xy+e^x and C is a straight line from (0,0) to (2,1).

Answer
\displaystyle \int _C\vecs F·d\vecs r=\left(e^2+1\right) units of work

30. [T] Evaluate \displaystyle \int _C\vecs ∇f·d\vecs r, where f(x,y)=x^2y−x and C is any path in a plane from (1, 2) to (3, 2).

31. Evaluate \displaystyle \int _C\vecs ∇f·d\vecs r, where f(x,y,z)=xyz^2−yz and C has initial point (1, 2, 3) and terminal point (3, 5, 2).

Answer
\displaystyle \int _C\vecs F·d\vecs r=38 units of work

For the following exercises, let \vecs{F}(x,y)=2xy^2\,\mathbf{\hat i}+(2yx^2+2y)\,\mathbf{\hat j} and G(x,y)=(y+x)\,\mathbf{\hat i}+(y−x)\,\mathbf{\hat j}, and let C_1 be the curve consisting of the circle of radius 2, centered at the origin and oriented counterclockwise, and C_2 be the curve consisting of a line segment from (0, 0) to (1, 1) followed by a line segment from (1, 1) to (3, 1).

Calc_15_3_E_32F.jpeg              CNX_Calc_Figure_16_03_203.jpg

32. Calculate the line integral of \vecs F over C_1.

33. Calculate the line integral of \vecs G over C_1.

Answer
\displaystyle ∮_{C_1}\vecs G·d\vecs r=−8π units of work

34. Calculate the line integral of \vecs F over C_2.

35. Calculate the line integral of \vecs G over C_2.

Answer
\displaystyle ∮_{C_2}\vecs F·d\vecs r=7 units of work

36. [T] Let \vecs F(x,y,z)=x^2\,\mathbf{\hat i}+z\sin(yz)\,\mathbf{\hat j}+y\sin(yz)\,\mathbf{\hat k}. Calculate \displaystyle ∮_C\vecs F·d\vecs{r}, where C is a path from A=(0,0,1) to B=(3,1,2).

37. [T] Find line integral \displaystyle ∮_C\vecs F·dr of vector field \vecs F(x,y,z)=3x^2z\,\mathbf{\hat i}+z^2\,\mathbf{\hat j}+(x^3+2yz)\,\mathbf{\hat k} along curve C parameterized by \vecs r(t)=(\frac{\ln t}{\ln 2})\,\mathbf{\hat i}+t^{3/2}\,\mathbf{\hat j}+t\cos(πt),1≤t≤4.

Answer
\displaystyle \int _C\vecs F·d\vecs r=159 units of work

For exercises 38 - 40, show that the following vector fields are conservative. Then calculate \displaystyle \int _C\vecs F·d\vecs r for the given curve.

38. \vecs{F}(x,y)=(xy^2+3x^2y)\,\mathbf{\hat i}+(x+y)x^2\,\mathbf{\hat j}; C is the curve consisting of line segments from (1,1) to (0,2) to (3,0).

39. \vecs{F}(x,y)=\dfrac{2x}{y^2+1}\,\mathbf{\hat i}−\dfrac{2y(x^2+1)}{(y^2+1)^2}\,\mathbf{\hat j}; C is parameterized by x=t^3−1,\;y=t^6−t, for 0≤t≤1.

Answer
\displaystyle \int _C\vecs F·d\vecs r=−1 units of work

40. [T] \vecs{F}(x,y)=[\cos(xy^2)−xy^2\sin(xy^2)]\,\mathbf{\hat i}−2x^2y\sin(xy^2)\,\mathbf{\hat j}; C is the curve \langle e^t,e^{t+1}\rangle, for −1≤t≤0.

41. The mass of Earth is approximately 6×10^{27}g and that of the Sun is 330,000 times as much. The gravitational constant is 6.7×10^{−8}cm^3/s^2·g. The distance of Earth from the Sun is about 1.5×10^{12}cm. Compute, approximately, the work necessary to increase the distance of Earth from the Sun by 1\;cm.

Answer
4×10^{31} erg

42. [T] Let \vecs{F}(x,y,z)=(e^x\sin y)\,\mathbf{\hat i}+(e^x\cos y)\,\mathbf{\hat j}+z^2\,\mathbf{\hat k}. Evaluate the integral \displaystyle \int _C\vecs F·d\vecs r, where \vecs r(t)=\langle\sqrt{t},t^3,e^{\sqrt{t}}\rangle, for 0≤t≤1.

43. [T] Let C:[1,2]→ℝ^2 be given by x=e^{t−1},y=\sin\left(\frac{π}{t}\right). Use a computer to compute the integral \displaystyle \int _C\vecs F·d\vecs r=\int _C 2x\cos y\,dx−x^2\sin y\,dy, where \vecs{F}(x,y)=(2x\cos y)\,\mathbf{\hat i}−(x^2\sin y)\,\mathbf{\hat j}.

Answer
\displaystyle \int _C\vecs F·d\vecs s=0.4687 units of work

44. [T] Use a computer algebra system to find the mass of a wire that lies along the curve \vecs r(t)=(t^2−1)\,\mathbf{\hat j}+2t\,\mathbf{\hat k}, where 0≤t≤1, if the density is given by d(t) = \dfrac{3}{2}t.

45. Find the circulation and flux of field \vecs{F}(x,y)=−y\,\mathbf{\hat i}+x\,\mathbf{\hat j} around and across the closed semicircular path that consists of semicircular arch \vecs r_1(t)=(a\cos t)\,\mathbf{\hat i}+(a\sin t)\,\mathbf{\hat j},\quad 0≤t≤π, followed by line segment \vecs r_2(t)=t\,\mathbf{\hat i},\quad −a≤t≤a.

CNX_Calc_Figure_16_03_204.jpg

Answer
\text{circulation}=πa^2 and \text{flux}=0

46. Compute \displaystyle \int _C\cos x\cos y\,dx−\sin x\sin y\,dy, where \vecs r(t)=\langle t,t^2 \rangle, \quad 0≤t≤1.

47. Complete the proof of the theorem titled THE PATH INDEPENDENCE TEST FOR CONSERVATIVE FIELDS by showing that f_y=Q(x,y).

Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.


This page titled 3.4E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by OpenStax.

Support Center

How can we help?