Skip to main content
Mathematics LibreTexts

12: Appendix B- Table of Laplace Transforms

  • Page ID
    98111
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The function \(u\) is the Heaviside function, \(\delta\) is the Dirac delta function, and

    \[\Gamma(t)=\int_{0}^{\infty}e^{-\tau}\tau^{t-1}d\tau ,\qquad\text{erf}(t)=\frac{2}{\sqrt{\pi}}\int_{0}^{t}e^{-\tau^{2}}d\tau , \qquad\text{erfc}(t)=1-\text{erf}(t).\]

    Table \(\PageIndex{1}\)

    \(f(t)\) \(F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt\)
    \(C\) \(\frac{C}{s}\)
    \(t\) \(\frac{1}{s^{2}}\)
    \(t^{2}\) \(\frac{2}{s^{3}}\)
    \(t^{n}\) \(\frac{n!}{s^{n+1}}\)
    \(t^{p}\quad (p>0)\) \(\frac{\Gamma (p+1)}{s^{p+1}}\)
    \(e^{-at}\) \(\frac{1}{s+a}\)
    \(\sin(\omega t)\) \(\frac{\omega}{s^{2}+\omega ^{2}}\)
    \(\cos(\omega t)\) \(\frac{s}{s^{2}+\omega^{2}}\)
    \(\sinh (\omega t)\) \(\frac{\omega}{s^{2}-\omega ^{2}}\)
    \(\cosh (\omega t)\) \(\frac{s}{s^{2}-\omega^{2}}\)
    \(u(t-a)\) \(\frac{e^{-as}}{s}\)
    \(\delta (t)\) \(1\)
    \(\delta (t-a)\) \(e^{-as}\)
    \(\text{erf}\left(\frac{t}{2a}\right)\) \(\frac{1}{s}e^{(as)^{2}}\text{erfc}(as)\)
    \(\frac{1}{\sqrt{\pi t}}\text{exp}\left(\frac{-a^{2}}{4t}\right)\quad (a\geq 0)\) \(\frac{e^{-as}}{\sqrt{s}}\)
    \(\frac{1}{\sqrt{\pi t}}-ae^{a^{2}t}\text{erfc}(a\sqrt{t})\quad (a>0)\) \(\frac{1}{\sqrt{s}+a}\)
    \(af(t)+bg(t)\) \(aF(s)+bG(s)\)
    \(f(at)\quad (a>0)\) \(\frac{1}{a}F\left(\frac{s}{a}\right)\)
    \(f(t-a)u(t-a)\) \(e^{-as}F(s)\)
    \(e^{-at}f(t)\) \(F(s+a)\)
    \(g'(t)\) \(sG(s)-g(0)\)
    \(g''(t)\) \(s^{2}G(s)-sg(0)-g'(0)\)
    \(g'''(t)\) \(s^{3}G(s)-s^{2}g(0)-sg'(0)-g''(0)\)
    \(g^{(n)}(t)\) \(s^{n}G(s)-s^{n-1}g(0)-\cdots -g^{(n-1)}(0)\)
    \((f\ast g)(t)=\int_{0}^{t} f(\tau )g(t-\tau )d\tau \) \(F(s)G(s)\)
    \(tf(t)\) \(-F'(s)\)
    \(t^{n}f(t)\) \((-1)^{n}F^{(n)}(s)\)
    \(\int_{0}^{t}f(\tau )d\tau \) \(\frac{1}{s}F(s)\)
    \(\frac{f(t)}{t}\) \(\int_{s}^{\infty} F(\sigma )d\sigma\)

    12: Appendix B- Table of Laplace Transforms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?