Skip to main content
Mathematics LibreTexts

4.5E: Nonhomgeneous Linear Equations (Exercises)

  • Page ID
    43297
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q4.5.1

    In Exercises 4.5.1-4.5.12 find a particular solution. Then find the general solution and, where indicated, solve the initial value problem and graph the solution.

    1. \(y''+5y'-6y=22+18x-18x^2\)

    2. \(y''-4y'+5y=1+5x\)

    3. \(y''+8y'+7y=-8-x+24x^2+7x^3\)

    4. \(y''-4y'+4y=2+8x-4x^2\)

    5. \(y''+2y'+10y=4+26x+6x^2+10x^3, \quad y(0)=2, \quad y'(0)=9\)

    6. \(y''+6y'+10y=22+20x, \quad y(0)=2,\; y'(0)=-2\)

    7. \(y''+5y'-6y=6e^{3x}\)

    8. \(y''-4y'+5y=e^{2x}\)

    9. \(y''+8y'+7y=10e^{-2x}, \quad y(0)=-2,\; y'(0)=10\)

    10. \(y''-4y'+4y=e^{x}, \quad y(0)=2,\quad y'(0)=0\)

    11. \(y''+2y'+10y=e^{x/2}\)

    12. \(y''+6y'+10y=e^{-3x}\)

     

    Q4.5.2

    13. Show that \[y''+y'=1+2x+x^2; \tag{A}\] will not yield a particular solution of the form \(y_p=A+Bx+Cx^2\), where \(A\), \(B\), and \(C\) are constants.

    14. Show that \[y''-7y'+12y=5e^{4x}; \tag{A}\] will not yield a particular solution of the form \(y_p=Ae^{4x}\).

    15. Prove: If \(\alpha\) and \(M\) are constants and \(M\ne0\) then constant coefficient equation

    \[ay''+by'+cy=M e^{\alpha x}\]

    has a particular solution \(y_p=Ae^{\alpha x}\) (\(A=\) constant) if and only if \(e^{\alpha x}\) isn’t a solution of the complementary equation.

    Q4.5.3

    In Exercises 4.5.16-4.5.21 find a particular solution. Then find the general solution and, where indicated, solve the initial value problem and graph the solution.

    16. \(y''-8y'+16y=23\cos x-7\sin x\)

    17. \(y''+y'=-8\cos2x+6\sin2x\)

    18. \(y''-2y'+3y=-6\cos3x+6\sin3x\)

    19. \(y''+6y'+13y=18\cos x+6\sin x\)

    20. \(y''+7y'+12y=-2\cos2x+36\sin2x, \quad y(0)=-3,\quad y'(0)=3\)

    21. \(y''-6y'+9y=18\cos3x+18\sin3x, \quad y(0)=2,\quad y'(0)=2\)

    Q4.5.4

    In Exercises 4.5.22-5.3.27  use the principal of superposition to find a particular solution. Then find the general solution.

    22. \(y''+5y'-6y=22+18x-18x^2+6e^{3x}\) 

    23. \(y''-4y'+5y=1+5x+e^{2x}\) 

    24. \(y''+8y'+7y=-8-x+24x^2+7x^3+10e^{-2x}\) 

    25. \(y''-4y'+4y=2+8x-4x^2+e^{x}\) 

    26. \(y''+2y'+10y=4+26x+6x^2+10x^3+e^{x/2}\) 

    27. \(y''+6y'+10y=22+20x+e^{-3x}\) 

    Q4.5.5

    28. Prove: If \(y_{p_1}\) is a particular solution of

    \[P_0(x)y''+P_1(x)y'+P_2(x)y=F_1(x)\]

    on \((a,b)\) and \(y_{p_2}\) is a particular solution of

    \[P_0(x)y''+P_1(x)y'+P_2(x)y=F_2(x)\]

    on \((a,b)\), then \(y_p=y_{p_1}+y_{p_2}\) is a solution of

    \[P_0(x)y''+P_1(x)y'+P_2(x)y=F_1(x)+F_2(x)\]

    on \((a,b)\).

    29. Suppose \(p\), \(q\), and \(f\) are continuous on \((a,b)\). Let \(y_1\), \(y_2\), and \(y_p\) be twice differentiable on \((a,b)\), such that \(y=c_1y_1+c_2y_2+y_p\) is a solution of

    \[y''+p(x)y'+q(x)y=f\]

    on \((a,b)\) for every choice of the constants \(c_1,c_2\). Show that \(y_1\) and \(y_2\) are solutions of the complementary equation on \((a,b)\).

    This page titled 4.5E: Nonhomgeneous Linear Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.