Skip to main content
Mathematics LibreTexts

4.6E: The Method of Undetermined Coefficients I (Exercises)

  • Page ID
    43299
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q4.6.1

    In Exercises 4.6.1-4.6.14 find a particular solution.

    1. \(y''-3y'+2y=e^{3x}(1+x)\)

    2. \(y''-6y'+5y=e^{-3x}(35-8x)\)

    3. \(y''-2y'-3y=e^x(-8+3x)\)

    4. \(y''+2y'+y=e^{2x}(-7-15x+9x^2)\)

    5. \(y''+4y=e^{-x}(7-4x+5x^2)\)

    6. \(y''-y'-2y=e^x(9+2x-4x^2)\)

    7. \(y''-4y'-5y=-6xe^{-x}\)

    8. \(y''-3y'+2y=e^x(3-4x)\)

    9. \(y''+y'-12y=e^{3x}(-6+7x)\)

    10. \(2y''-3y'-2y=e^{2x}(-6+10x)\)

    11. \(y''+2y'+y=e^{-x}(2+3x)\)

    12. \(y''-2y'+y=e^x(1-6x)\)

    13. \(y''-4y'+4y=e^{2x}(1-3x+6x^2)\)

    14. \(9y''+6y'+y=e^{-x/3}(2-4x+4x^2)\)

    Q4.6.2

    In Exercises 4.6.15-4.6.19 find the general solution.

    15. \(y''-3y'+2y=e^{3x}(1+x)\)

    16. \(y''-6y'+8y=e^x(11-6x)\)

    17. \(y''+6y'+9y=e^{2x}(3-5x)\)

    18. \(y''+2y'-3y=-16xe^x\)

    19. \(y''-2y'+y=e^x(2-12x)\)

    Q4.6.3

    In Exercises 4.6.20-4.6.23 solve the initial value problem and plot the solution.

    20. \(y''-4y'-5y=9e^{2x}(1+x), \quad y(0)=0,\quad y'(0)=-10\)

    21. \(y''+3y'-4y=e^{2x}(7+6x), \quad y(0)=2,\quad y'(0)=8\)

    22. \(y''+4y'+3y=-e^{-x}(2+8x), \quad y(0)=1,\quad y'(0)=2\)

    23. \(y''-3y'-10y=7e^{-2x}, \quad y(0)=1,\quad y'(0)=-17\)

    Q4.6.4

    In Exercises 4.6.24-4.6.29 use the principle of superposition to find a particular solution.

    24. \(y''+y'+y=xe^x+e^{-x}(1+2x)\)

    25. \(y''-7y'+12y=-e^x(17-42x)-e^{3x}\)

    26. \(y''-8y'+16y=6xe^{4x}+2+16x+16x^2\)

    27. \(y''-3y'+2y=-e^{2x}(3+4x)-e^x\)

    28. \(y''-2y'+2y=e^x(1+x)+e^{-x}(2-8x+5x^2)\)

    29. \(y''+y=e^{-x}(2-4x+2x^2)+e^{3x}(8-12x-10x^2)\)

    Q4.6.5

    30. Suppose \(\alpha\ne0\) and \(k\) is a positive integer. In most calculus books integrals like \(\int x^k e^{\alpha x}\,dx\) are evaluated by integrating by parts \(k\) times. This exercise presents another method. Let

    \[y=\int e^{\alpha x}P(x)\,dx\nonumber \]

    with

    \[P(x)=p_0+p_1x+\cdots+p_kx^k\nonumber \]

    (where \(p_k \neq 0\)).

    1. Show that \(y=e^{\alpha x}u\), where \[u'+\alpha u=P(x). \tag{A}\]
    2. Show that (A) has a particular solution of the form \[u_p=A_0+A_1x+\cdots+A_kx^k,\nonumber \] where \(A_k\), \(A_{k-1}\), …, \(A_0\) can be computed successively by equating coefficients of \(x^k,x^{k-1}, \dots,1\) on both sides of the equation \[u_p'+\alpha u_p=P(x).\nonumber \]
    3. Conclude that \[\int e^{\alpha x}P(x)\,dx=\left(A_0+A_1x+\cdots+A_kx^k\right)e^{\alpha x} +c,\nonumber \] where \(c\) is a constant of integration.

    31. Use the method of Exercise 4.6.30 to evaluate the integral.

    1. \(\int e^{x}(4+x)dx\)
    2. \(\int e^{-x}(-1+x^{2})dx\)
    3. \(\int x^{3}e^{-2x}dx\)
    4. \(\int e^{x}(1+x)^{2}dx\)
    5. \(\int e^{3x}(-14+30x+27x^{2})dx\)
    6. \(\int e^{-x}(1+6x^{2}-14x^{3}+3x^{4})dx\)

    32. Use the method suggested in Exercise 4.6.30 to evaluate \(\int x^ke^{\alpha x}\,dx\), where \(k\) is an arbitrary positive integer and \(\alpha\ne0\).


    This page titled 4.6E: The Method of Undetermined Coefficients I (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.