Skip to main content
Mathematics LibreTexts

4.9E: Reduction of Order (Exercises)

  • Page ID
    43303
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q4.9.1

    In Exercises 4.9.1-4.9.17 find the general solution, given that \(y_1\) satisfies the complementary equation. As a byproduct, find a fundamental set of solutions of the complementary equation.

    1. \((2x+1)y''-2y'-(2x+3)y=(2x+1)^2; \quad y_1=e^{-x}\)

    2. \(x^2y''+xy'-y={4\over x^2}; \quad y_1=x\)

    3. \(x^2y''-xy'+y=x; \quad y_1=x\)

    4. \(y''-3y'+2y={1\over1+e^{-x}}; \quad y_1=e^{2x}\)

    5. \(y''-2y'+y=7x^{3/2}e^x; \quad y_1=e^x\)

    6. \(4x^2y''+(4x-8x^2)y'+(4x^2-4x-1)y=4x^{1/2}e^x(1+4x); \quad y_1=x^{1/2}e^x\)

    7. \(y''-2y'+2y=e^x\sec x; \quad y_1=e^x\cos x\)

    8. \(y''+4xy'+(4x^2+2)y=8e^{-x(x+2)}; \quad y_1=e^{-x^2}\)

    9. \(x^2y''+xy'-4y=-6x-4; \quad y_1=x^2\)

    10. \(x^2y''+2x(x-1)y'+(x^2-2x+2)y=x^3e^{2x}; \quad y_1=xe^{-x}\)

    11. \(x^2y''-x(2x-1)y'+(x^2-x-1)y=x^2e^x; \quad y_1=xe^x\)

    12. \((1-2x)y''+2y'+(2x-3)y=(1-4x+4x^2)e^x; \quad y_1=e^x\)

    13. \(x^2y''-3xy'+4y=4x^4; \quad y_1=x^2\)

    14. \(2xy''+(4x+1)y'+(2x+1)y=3x^{1/2}e^{-x}; \quad y_1=e^{-x}\)

    15. \(xy''-(2x+1)y'+(x+1)y=-e^x; \quad y_1=e^x\)

    16. \(4x^2y''-4x(x+1)y'+(2x+3)y=4x^{5/2}e^{2x}; \quad y_1=x^{1/2}\)

    17. \(x^2y''-5xy'+8y=4x^2; \quad y_1=x^2\)

    Q4.9.2

    In Exercises 4.9.18-4.9.30 find a fundamental set of solutions, given that \(y_{1}\) is a solution.

    18. \(xy''+(2-2x)y'+(x-2)y=0; \quad y_1=e^x\)

    19. \(x^2y''-4xy'+6y=0; \quad y_1=x^2\)

    20. \(x^2(\ln |x|)^2y''-(2x \ln |x|)y'+(2+\ln |x|)y=0; \quad y_1=\ln |x|\)

    21. \(4xy''+2y'+y=0; \quad y_1=\sin \sqrt{x}\)

    22. \(xy''-(2x+2)y'+(x+2)y=0; \quad y_1=e^x\)

    23. \(x^2y''-(2a-1)xy'+a^2y=0; \quad y_1=x^a\)

    24. \(x^2y''-2xy'+(x^2+2)y=0; \quad y_1=x \sin x\)

    25. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)

    26. \(4x^2(\sin x)y''-4x(x\cos x+\sin x)y'+(2x\cos x+3\sin x)y=0; \quad y_1=x^{1/2}\)

    27. \(4x^2y''-4xy'+(3-16x^2)y=0; \quad y_1=x^{1/2}e^{2x}\)

    28. \((2x+1)xy''-2(2x^2-1)y'-4(x+1)y=0; \quad y_1=1/x\)

    29. \((x^2-2x)y''+(2-x^2)y'+(2x-2)y=0; \quad y_1=e^x\)

    30. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)

    Q4.9.3

    In Exercises 4.9.31-4.9.33 solve the initial value problem, given that \(y_{1}\) satisfies the complementary equation.

    31. \(x^2y''-3xy'+4y=4x^4,\quad y(-1)=7,\quad y'(-1)=-8; \quad y_1=x^2\)

    32. \((3x-1)y''-(3x+2)y'-(6x-8)y=0, \quad y(0)=2,\; y'(0)=3; \quad y_1=e^{2x}\)

    33. \((x+1)^2y''-2(x+1)y'-(x^2+2x-1)y=(x+1)^3e^x, \quad y(0)=1,\quad y'(0)=~-1; \quad y_1=(x+1)e^x\)

    Q4.9.4

    In Exercises 4.9.34 and 4.9.35 solve the initial value problem and graph the solution, given that \(y_{1}\) satisfies the complementary equation.

    34. \(x^2y''+2xy'-2y=x^2, \quad y(1)={5\over4},\; y'(1)={3\over2}; \quad y_1=x\)

    35. \((x^2-4)y''+4xy'+2y=x+2, \quad y(0)=-{1\over3},\quad y'(0)=-1; \quad y_1={1\over x-2}\)

     


    This page titled 4.9E: Reduction of Order (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?