Skip to main content
Mathematics LibreTexts

6.3.1: Series Solutions Near an Ordinary Point I (Exercises)

  • Page ID
    43318
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q6.3.1

    In Exercises 6.3.1-6.3.8 find the general solution about the ordinary point x = 0. Also, find a fundamental set of solutions.

    1. \((1+x^2)y''+6xy'+6y=0\)

    2. \((1+x^2)y''+2xy'-2y=0\)

    3. \((1+x^2)y''-8xy'+20y=0\)

    4. \((1-x^2)y''-8xy'-12y=0\)

    5. \((1+2x^2)y''+7xy'+2y=0\)

    6. \({(1+x^2)y''+2xy'+{1\over4}y=0}\)

    7. \((x+2)y''+xy'-y=0\)

    8. \((1+x^2)y''-10xy'+28y=0\)

    Q6.3.2

    In Exercises 6.3.11-6.3.13 find \(a_{0}, ..., a_{N}\) for \(N\) at least \(7\) in the power series solution \(y=\sum _{n=0}^{\infty} a_{n}x^{n}\) of the initial value problem.

    9. \((1+x^2)y''+xy'+y=0,\quad y(0)=2,\quad y'(0)=-1\)

    10. \((1+2x^2)y''-9xy'-6y=0,\quad y(0)=1,\quad y'(0)=-1\)

    11. \((1+8x^2)y''+2y=0,\quad y(0)=2,\quad y'(0)=-1\)

    Q6.3.3

    In Exercises 6.3.12-6.3.16 find the power series in \(x-x_{0}\) for the general solution.

    12. \(y''-y=0;\quad x_0=3\)

    13. \(y''-(x-3)y'-y=0;\quad x_0=3\)

    14. \((1-4x+2x^2)y''+10(x-1)y'+6y=0;\quad x_0=1\)

    15. \((11-8x+2x^2)y''-16(x-2)y'+36y=0;\quad x_0=2\)

    16. \((5+6x+3x^2)y''+9(x+1)y'+3y=0;\quad x_0=-1\)

    Q6.3.4

    In Exercises 6.3.17-6.3.22 find \(a_{0}, ... a_{N}\) for \(N\) at least \(7\) in the power series \(y=\sum_{n=0}^{\infty} a_{n}(x-x_{0})^{n}\) for the solution of the initial value problem. Take \(x_{0}\) to be the point where the initial conditions are imposed.

    17. \((x^2-4)y''-xy'-3y=0,\quad y(0)=-1,\quad y'(0)=2\)

    18. \(y''+(x-3)y'+3y=0,\quad y(3)=-2,\quad y'(3)=3\)

    19. \((5-6x+3x^2)y''+(x-1)y'+12y=0,\quad y(1)=-1,\quad y'(1)=1\)

    20. \((4x^2-24x+37)y''+y=0,\quad y(3)=4,\quad y'(3)=-6\)

    21. \((x^2-8x+14)y''-8(x-4)y'+20y=0,\quad y(4)=3,\quad y'(4)=-4\)

    22. \((2x^2+4x+5)y''-20(x+1)y'+60y=0,\quad y(-1)=3,\quad y'(-1)=-3\)

    Q6.3.5

    23.

    1. Find a power series in \(x\) for the general solution of \[(1+x^2)y''+4xy'+2y=0. \tag{A}\]
    2. Use (a) and the formula \[{1\over1-r}=1+r+r^2+\cdots+r^n+\cdots \quad(-1<r<1)\nonumber \] for the sum of a geometric series to find a closed form expression for the general solution of (A) on \((-1,1)\).
    3. Show that the expression obtained in (b) is actually the general solution of of (A) on \((-\infty,\infty)\).

    This page titled 6.3.1: Series Solutions Near an Ordinary Point I (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.