# 4.8E: Exercises for Section 4.8

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In exercises 1 - 6, evaluate the limit.

1) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{e^x}{x}$$.

2) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{e^x}{x^k}$$.

$$\displaystyle \lim_{x→∞}\frac{e^x}{x^k} \quad = \quad ∞$$

3) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{\ln x}{x^k}$$.

4) Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2}$$.

$$\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2} \quad = \quad \frac{1}{2a}$$

5. Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^3−a^3}$$.

6. Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n}$$.

$$\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n} \quad = \quad \frac{1}{na^{n−1}}$$

In exercises 7 - 11, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7) $$\displaystyle \lim_{x→0^+}x^2\ln x$$

8) $$\displaystyle \lim_{x→∞}x^{1/x}$$

Cannot apply directly; use logarithms

9) $$\displaystyle \lim_{x→0}x^{2/x}$$

10) $$\displaystyle \lim_{x→0}\frac{x^2}{1/x}$$

Cannot apply directly; rewrite as $$\displaystyle \lim_{x→0}x^3$$

11) $$\displaystyle \lim_{x→∞}\frac{e^x}{x}$$

In exercises 12 - 40, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12) $$\displaystyle \lim_{x→3}\frac{x^2−9}{x−3}$$

$$\displaystyle \lim_{x→3}\frac{x^2−9}{x−3} \quad = \quad 6$$

13) $$\displaystyle \lim_{x→3}\frac{x^2−9}{x+3}$$

14) $$\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x}$$

$$\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x} \quad = \quad -2$$

15) $$\displaystyle \lim_{x→π/2}\frac{\cos x}{\frac{π}{2}−x}$$

16) $$\displaystyle \lim_{x→π}\frac{x−π}{\sin x}$$

$$\displaystyle \lim_{x→π}\frac{x−π}{\sin x} \quad = \quad -1$$

17) $$\displaystyle \lim_{x→1}\frac{x−1}{\sin x}$$

18) $$\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x}$$

$$\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x} \quad = \quad n$$

19) $$\displaystyle \lim_{x→0}\frac{(1+x)^n−1−nx}{x^2}$$

20) $$\displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3}$$

$$\displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3} \quad = \quad −\frac{1}{2}$$

21) $$\displaystyle \lim_{x→0}\frac{\sqrt{1+x}−\sqrt{1−x}}{x}$$

22) $$\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2}$$

$$\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2} \quad = \quad \frac{1}{2}$$

23) $$\displaystyle \lim_{x→0}\frac{\tan x}{\sqrt{x}}$$

24) $$\displaystyle \lim_{x→1}\frac{x-1}{\ln x}$$

$$\displaystyle \lim_{x→1}\frac{x-1}{\ln x} \quad = \quad 1$$

25) $$\displaystyle \lim_{x→0}\,(x+1)^{1/x}$$

26) $$\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1}$$

$$\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1} \quad = \quad \frac{1}{6}$$

27) $$\displaystyle \lim_{x→0^+}x^{2x}$$

28) $$\displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right)$$

$$\displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 1$$

29) $$\displaystyle \lim_{x→0}\frac{\sin x−x}{x^2}$$

30) $$\displaystyle \lim_{x→0^+}x\ln\left(x^4\right)$$

$$\displaystyle \lim_{x→0^+}x\ln\left(x^4\right) \quad = \quad 0$$

31) $$\displaystyle \lim_{x→∞}(x−e^x)$$

32) $$\displaystyle \lim_{x→∞}x^2e^{−x}$$

$$\displaystyle \lim_{x→∞}x^2e^{−x} \quad = \quad 0$$

33) $$\displaystyle \lim_{x→0}\frac{3^x−2^x}{x}$$

34) $$\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x}$$

$$\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x} \quad = \quad -1$$

35) $$\displaystyle \lim_{x→π/4}(1−\tan x)\cot x$$

36) $$\displaystyle \lim_{x→∞}xe^{1/x}$$

$$\displaystyle \lim_{x→∞}xe^{1/x} \quad = \quad ∞$$

37) $$\displaystyle \lim_{x→0}x^{1/\cos x}$$

38) $$\displaystyle \lim_{x→0^{+} }x^{1/x}$$

$$\displaystyle \lim_{x→0^{+} }x^{1/x} \quad = \quad 0$$

39) $$\displaystyle \lim_{x→0}\left(1−\frac{1}{x}\right)^x$$

40) $$\displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x$$

$$\displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x \quad = \quad \frac{1}{e}$$

For exercises 41 - 50, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

41) [T] $$\displaystyle \lim_{x→0}\frac{e^x−1}{x}$$

42) [T] $$\displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right)$$

$$\displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 0$$

43) [T] $$\displaystyle \lim_{x→1}\frac{x−1}{1−\cos(πx)}$$

44) [T] $$\displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1}$$

$$\displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1} \quad = \quad 1$$

45) [T] $$\displaystyle \lim_{x→1}\frac{(x−1)^2}{\ln x}$$

46) [T] $$\displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x}$$

$$\displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x} \quad = \quad 0$$

47) [T] $$\displaystyle \lim_{x→0}\left(\csc x−\frac{1}{x}\right)$$

48) [T] $$\displaystyle \lim_{x→0^+}\tan\left(x^x\right)$$

$$\displaystyle \lim_{x→0^+}\tan\left(x^x\right) \quad = \quad \tan 1$$

49) [T] $$\displaystyle \lim_{x→0^+}\frac{\ln x}{\sin x}$$

50) [T] $$\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x}$$

$$\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x} \quad = \quad 2$$

This page titled 4.8E: Exercises for Section 4.8 is shared under a not declared license and was authored, remixed, and/or curated by Zoya Kravets.