Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.8E: Exercises for Section 4.8

( \newcommand{\kernel}{\mathrm{null}\,}\)

In exercises 1 - 6, evaluate the limit.

1) Evaluate the limit \displaystyle \lim_{x→∞}\frac{e^x}{x}.

2) Evaluate the limit \displaystyle \lim_{x→∞}\frac{e^x}{x^k}.

Answer
\displaystyle \lim_{x→∞}\frac{e^x}{x^k} \quad = \quad ∞

3) Evaluate the limit \displaystyle \lim_{x→∞}\frac{\ln x}{x^k}.

4) Evaluate the limit \displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2}.

Answer
\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2} \quad = \quad \frac{1}{2a}

5. Evaluate the limit \displaystyle \lim_{x→a}\frac{x−a}{x^3−a^3}.

6. Evaluate the limit \displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n}.

Answer
\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n} \quad = \quad \frac{1}{na^{n−1}}

In exercises 7 - 11, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7) \displaystyle \lim_{x→0^+}x^2\ln x

8) \displaystyle \lim_{x→∞}x^{1/x}

Answer
Cannot apply directly; use logarithms

9) \displaystyle \lim_{x→0}x^{2/x}

10) \displaystyle \lim_{x→0}\frac{x^2}{1/x}

Answer
Cannot apply directly; rewrite as \displaystyle \lim_{x→0}x^3

11) \displaystyle \lim_{x→∞}\frac{e^x}{x}

In exercises 12 - 40, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12) \displaystyle \lim_{x→3}\frac{x^2−9}{x−3}

Answer
\displaystyle \lim_{x→3}\frac{x^2−9}{x−3} \quad = \quad 6

13) \displaystyle \lim_{x→3}\frac{x^2−9}{x+3}

14) \displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x}

Answer
\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x} \quad = \quad -2

15) \displaystyle \lim_{x→π/2}\frac{\cos x}{\frac{π}{2}−x}

16) \displaystyle \lim_{x→π}\frac{x−π}{\sin x}

Answer
\displaystyle \lim_{x→π}\frac{x−π}{\sin x} \quad = \quad -1

17) \displaystyle \lim_{x→1}\frac{x−1}{\sin x}

18) \displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x}

Answer
\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x} \quad = \quad n

19) \displaystyle \lim_{x→0}\frac{(1+x)^n−1−nx}{x^2}

20) \displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3}

Answer
\displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3} \quad = \quad −\frac{1}{2}

21) \displaystyle \lim_{x→0}\frac{\sqrt{1+x}−\sqrt{1−x}}{x}

22) \displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2}

Answer
\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2} \quad = \quad \frac{1}{2}

23) \displaystyle \lim_{x→0}\frac{\tan x}{\sqrt{x}}

24) \displaystyle \lim_{x→1}\frac{x-1}{\ln x}

Answer
\displaystyle \lim_{x→1}\frac{x-1}{\ln x} \quad = \quad 1

25) \displaystyle \lim_{x→0}\,(x+1)^{1/x}

26) \displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1}

Answer
\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1} \quad = \quad \frac{1}{6}

27) \displaystyle \lim_{x→0^+}x^{2x}

28) \displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right)

Answer
\displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 1

29) \displaystyle \lim_{x→0}\frac{\sin x−x}{x^2}

30) \displaystyle \lim_{x→0^+}x\ln\left(x^4\right)

Answer
\displaystyle \lim_{x→0^+}x\ln\left(x^4\right) \quad = \quad 0

31) \displaystyle \lim_{x→∞}(x−e^x)

32) \displaystyle \lim_{x→∞}x^2e^{−x}

Answer
\displaystyle \lim_{x→∞}x^2e^{−x} \quad = \quad 0

33) \displaystyle \lim_{x→0}\frac{3^x−2^x}{x}

34) \displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x}

Answer
\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x} \quad = \quad -1

35) \displaystyle \lim_{x→π/4}(1−\tan x)\cot x

36) \displaystyle \lim_{x→∞}xe^{1/x}

Answer
\displaystyle \lim_{x→∞}xe^{1/x} \quad = \quad ∞

37) \displaystyle \lim_{x→0}x^{1/\cos x}

38) \displaystyle \lim_{x→0^{+} }x^{1/x}

Answer
\displaystyle \lim_{x→0^{+} }x^{1/x} \quad = \quad 0

39) \displaystyle \lim_{x→0}\left(1−\frac{1}{x}\right)^x

40) \displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x

Answer
\displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x \quad = \quad \frac{1}{e}

For exercises 41 - 50, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

41) [T] \displaystyle \lim_{x→0}\frac{e^x−1}{x}

42) [T] \displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right)

Answer
\displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 0

43) [T] \displaystyle \lim_{x→1}\frac{x−1}{1−\cos(πx)}

44) [T] \displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1}

Answer
\displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1} \quad = \quad 1

45) [T] \displaystyle \lim_{x→1}\frac{(x−1)^2}{\ln x}

46) [T] \displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x}

Answer
\displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x} \quad = \quad 0

47) [T] \displaystyle \lim_{x→0}\left(\csc x−\frac{1}{x}\right)

48) [T] \displaystyle \lim_{x→0^+}\tan\left(x^x\right)

Answer
\displaystyle \lim_{x→0^+}\tan\left(x^x\right) \quad = \quad \tan 1

49) [T] \displaystyle \lim_{x→0^+}\frac{\ln x}{\sin x}

50) [T] \displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x}

Answer
\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x} \quad = \quad 2

This page titled 4.8E: Exercises for Section 4.8 is shared under a not declared license and was authored, remixed, and/or curated by Zoya Kravets.

Support Center

How can we help?