A: Table of Derivatives Last updated Aug 15, 2023 Save as PDF Appendices B: Table of Integrals Page ID137826 Gilbert Strang & Edwin “Jed” HermanOpenStax ( \newcommand{\kernel}{\mathrm{null}\,}\) General Formulas 1. ddx(c)=0 2. ddx(f(x)+g(x))=f′(x)+g′(x) 3. ddx(f(x)g(x))=f′(x)g(x)+f(x)g′(x) 4. ddx(xn)=nxn−1,for real numbers n 5. ddx(cf(x))=cf′(x) 6. ddx(f(x)−g(x))=f′(x)−g′(x) 7. ddx(f(x)g(x))=g(x)f′(x)−f(x)g′(x)(g(x))2 8. ddx[f(g(x))]=f′(g(x))·g′(x) Trigonometric Functions 9. ddx(sinx)=cosx 10. ddx(tanx)=sec2x 11. ddx(secx)=secxtanx 12. ddx(cosx)=−sinx 13. ddx(cotx)=−csc2x 14. ddx(cscx)=−cscxcotx Inverse Trigonometric Functions 15. ddx(sin−1x)=11−x2 16. ddx(tan−1x)=11+x2 17. ddx(sec−1x)=1|x|x2−1 18. ddx(cos−1x)=−11−x2 19. ddx(cot−1x)=−11+x2 20. ddx(csc−1x)=−1|x|x2−1 Exponential and Logarithmic Functions 21. ddx(ex)=ex 22. ddx(ln|x|)=1x 23. ddx(bx)=bxlnb 24. ddx(logbx)=1xlnb Hyperbolic Functions 25. ddx(sinhx)=coshx 26. ddx(tanhx)=sech2x 27. ddx(sechx)=−sechxtanhx 28. ddx(coshx)=sinhx 29. ddx(cothx)=−csch2x 30. ddx(cschx)=−cschxcothx Inverse Hyperbolic Functions 31. ddx(sinh−1x)=1x2+1 32. ddx(tanh−1x)=11−x2(|x|<1) 33. ddx(sech−1x)=−1x1−x2(0<x<1) 34. ddx(cosh−1x)=1x2−1(x>1) 35. ddx(coth−1x)=11−x2(|x|>1) 36. ddx(csch−1x)=−1|x|1+x2(x≠0)