5.6E: Exercises for Section 5.6
( \newcommand{\kernel}{\mathrm{null}\,}\)
For exercises 1 - 8, compute each indefinite integral.
1) ∫e2xdx
2) ∫e−3xdx
- Answer
- ∫e−3xdx=−13e−3x+C
3) ∫2xdx
4) ∫3−xdx
- Answer
- ∫3−xdx=−3−xln3+C
5) ∫12xdx
6) ∫2xdx
- Answer
- ∫2xdx=2lnx+C=ln(x2)+C
7) ∫1x2dx
8) ∫1√xdx
- Answer
- ∫1√xdx=2√x+C
In exercises 9 - 16, find each indefinite integral by using appropriate substitutions.
9) ∫lnxxdx
10) ∫dxx(lnx)2
- Answer
- ∫dxx(lnx)2=−1lnx+C
11) ∫dxxlnx(x>1)
12) ∫dxxlnxln(lnx)
- Answer
- ∫dxxlnxln(lnx)=ln(ln(lnx))+C
13) ∫tanθdθ
14) ∫cosx−xsinxxcosxdx
- Answer
- ∫cosx−xsinxxcosxdx=ln(xcosx)+C
15) ∫ln(sinx)tanxdx
16) ∫ln(cosx)tanxdx
- Answer
- ∫ln(cosx)tanxdx=−12(ln(cos(x)))2+C
17) ∫xe−x2dx
18) ∫x2e−x3dx
- Answer
- ∫x2e−x3dx=−e−x33+C
19) ∫esinxcosxdx
20) ∫etanxsec2xdx
- Answer
- ∫etanxsec2xdx=etanx+C
21) ∫elnxxdx
22) ∫eln(1−t)1−tdt
- Answer
- ∫eln(1−t)1−tdt=∫1−t1−tdt=∫1dt=t+C
In exercises 23 - 28, verify by differentiation that ∫lnxdx=x(lnx−1)+C, then use appropriate changes of variables to compute the integral.
23) ∫lnxdx (Hint: ∫lnxdx=12∫xln(x2)dx)
24) ∫x2ln2xdx
- Answer
- ∫x2ln2xdx=19x3(ln(x3)−1)+C
25) ∫lnxx2dx (Hint: Set u=1x.)
26) ∫lnx√xdx (Hint: Set u=√x.)
- Answer
- ∫lnx√xdx=2√x(lnx−2)+C
27) Write an integral to express the area under the graph of y=1t from t=1 to ex and evaluate the integral.
28) Write an integral to express the area under the graph of y=et between t=0 and t=lnx, and evaluate the integral.
- Answer
- ∫lnx0etdt=et|lnx0=elnx−e0=x−1
In exercises 29 - 35, use appropriate substitutions to express the trigonometric integrals in terms of compositions with logarithms.
29) ∫tan(2x)dx
30) ∫sin(3x)−cos(3x)sin(3x)+cos(3x)dx
- Answer
- ∫sin(3x)−cos(3x)sin(3x)+cos(3x)dx=−13ln|sin(3x)+cos(3x)|+C
31) ∫xsin(x2)cos(x2)dx
32) ∫xcsc(x2)dx
- Answer
- ∫xcsc(x2)dx=−12ln∣csc(x2)+cot(x2)∣+C
33) ∫ln(cosx)tanxdx
34) ∫ln(cscx)cotxdx
- Answer
- ∫ln(cscx)cotxdx=−12(ln(cscx))2+C
35) ∫ex−e−xex+e−xdx
In exercises 36 - 40, evaluate the definite integral.
36) ∫211+2x+x23x+3x2+x3dx
- Answer
- ∫211+2x+x23x+3x2+x3dx=13ln(267)
37) ∫π/40tanxdx
- Answer
- ∫π/40tanxdx=ln√2
38) ∫π/30sinx−cosxsinx+cosxdx
- Answer
- ∫π/30sinx−cosxsinx+cosxdx=ln(√3−1)
39) ∫π/3π/4secxdx
- Answer
- ∫π/3π/4secxdx=ln(3√6+√3)
40) ∫π/3π/4cotxdx
- Answer
- ∫π/3π/4cotxdx=12ln32
In exercises 41 - 46, integrate using the indicated substitution.
41) ∫xx−100dx;u=x−100
42) ∫y−1y+1dy;u=y+1
- Answer
- ∫y−1y+1dy=y−2ln|y+1|+C
43) ∫1−x23x−x3dx;u=3x−x3
44) ∫sinx+cosxsinx−cosxdx;u=sinx−cosx
- Answer
- ∫sinx+cosxsinx−cosxdx=ln|sinx−cosx|+C
45) ∫e2x√1−e2xdx;u=1−e2x
46) ∫ln(x)√1−(lnx)2xdx;u=1−(lnx)2
- Answer
- ∫ln(x)√1−(lnx)2xdx=−13(1−(lnx2))3/2+C
47) ∫√x√x+2dx;u=√x+2
- Answer
- ∫√x√x+2dx=(√x+2)2−8(√x+2)+8ln(√x+2)+C
48) ∫exsec(ex+1)tan(ex+1)dx;u=ex+1
- Answer
- ∫exsec(ex+1)tan(ex+1)dx=sec(ex+1)+C
In exercises 49 - 54, state whether the right-endpoint approximation overestimates or underestimates the exact area. Then calculate the right endpoint estimate R50 and solve for the exact area.
49) [T] y=ex over [0,1]
50) [T] y=e−x over [0,1]
- Answer
- Since f is decreasing, the right endpoint estimate underestimates the area.
Exact solution: e−1e,R50=0.6258.
51) [T] y=ln(x) over [1,2]
52) [T] y=x+1x2+2x+6 over [0,1]
- Answer
- Since f is increasing, the right endpoint estimate overestimates the area.
Exact solution: 2ln(3)−ln(6)2,R50=0.2033.
53) [T] y=2x over [−1,0]
54) [T] y=−2−x over [0,1]
- Answer
- Since f is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).
Exact solution: −1ln(4),R50=−0.7164.
In exercises 55 - 58, f(x)≥0 for a≤x≤b. Find the area under the graph of f(x) between the given values a and b by integrating.
55) f(x)=log10(x)x;a=10,b=100
56) f(x)=log2(x)x;a=32,b=64
- Answer
- 112ln2
57) f(x)=2−x;a=1,b=2
58) f(x)=2−x;a=3,b=4
- Answer
- 1ln(65,536)
59) Find the area under the graph of the function f(x)=xe−x2 between x=0 and x=5.
60) Compute the integral of f(x)=xe−x2 and find the smallest value of N such that the area under the graph f(x)=xe−x2 between x=N and x=N+10 is, at most, 0.01.
- Answer
- ∫N+1Nxe−x2dx=12(e−N2−e−(N+1)2). The quantity is less than 0.01 when N=2.
61) Find the limit, as N tends to infinity, of the area under the graph of f(x)=xe−x2 between x=0 and x=5.
62) Show that ∫badtt=∫1/a1/bdtt when 0<a≤b.
- Answer
- ∫badxx=ln(b)−ln(a)=ln(1a)−ln(1b)=∫1/a1/bdxx
63) Suppose that f(x)>0 for all x and that f and g are differentiable. Use the identity fg=eglnf and the chain rule to find the derivative of fg.
64) Use the previous exercise to find the antiderivative of h(x)=xx(1+lnx) and evaluate ∫32xx(1+lnx)dx.
- Answer
- 23
65) Show that if c>0, then the integral of 1x from ac to bc (for0<a<b) is the same as the integral of 1x from a to b.
The following exercises are intended to derive the fundamental properties of the natural log starting from the definition ln(x)=∫x1dtt, using properties of the definite integral and making no further assumptions.
66) Use the identity ln(x)=∫x1dtt to derive the identity ln(1x)=−lnx.
- Answer
- We may assume that x>1,so 1x<1. Then, ∫1/x1dtt. Now make the substitution u=1t, so du=−dtt2 and duu=−dtt, and change endpoints: ∫1/x1dtt=−∫x1duu=−lnx.
67) Use a change of variable in the integral ∫xy11tdt to show that lnxy=lnx+lny for x,y>0.
68) Use the identity lnx=∫x1dtx to show that ln(x) is an increasing function of x on [0,∞), and use the previous exercises to show that the range of ln(x) is (−∞,∞). Without any further assumptions, conclude that ln(x) has an inverse function defined on (−∞,∞).
69) Pretend, for the moment, that we do not know that ex is the inverse function of ln(x), but keep in mind that ln(x) has an inverse function defined on (−∞,∞). Call it E. Use the identity lnxy=lnx+lny to deduce that E(a+b)=E(a)E(b) for any real numbers a, b.
70) Pretend, for the moment, that we do not know that ex is the inverse function of lnx, but keep in mind that lnx has an inverse function defined on (−∞,∞). Call it E. Show that E′(t)=E(t).
- Answer
- x=E(ln(x)). Then, 1=E′(lnx)x or x=E′(lnx). Since any number t can be written t=lnx for some x, and for such t we have x=E(t), it follows that for any t,E′(t)=E(t).
71) The sine integral, defined as S(x)=∫x0sinttdt is an important quantity in engineering. Although it does not have a simple closed formula, it is possible to estimate its behavior for large x. Show that for k≥1,|S(2πk)−S(2π(k+1))|≤1k(2k+1)π. (Hint: sin(t+π)=−sint)
72) [T] The normal distribution in probability is given by p(x)=1σ√2πe−(x−μ)2/2σ2, where σ is the standard deviation and μ is the average. The standard normal distribution in probability, ps, corresponds to μ=0 and σ=1. Compute the left endpoint estimates R10 and R100 of ∫1−11√2πe−x2/2dx.
- Answer
- R10=0.6811,R100=0.6827
73) [T] Compute the right endpoint estimates R50 and R100 of ∫5−312√2πe−(x−1)2/8.
Contributors and Attributions
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.
- Paul Seeburger (Monroe Community College) added problems 47-48 to Section 5.6 exercises.