11.5E: Exercises for Section 11.5
( \newcommand{\kernel}{\mathrm{null}\,}\)
In exercises 1 -13, determine a definite integral that represents the area.
1) Region enclosed by r=4
2) Region enclosed by r=3sinθ
- Answer
- 92∫π0sin2θdθ
3) Region in the first quadrant within the cardioid r=1+sinθ
4) Region enclosed by one petal of r=8sin(2θ)
- Answer
- 32∫π/20sin2(2θ)dθ
5) Region enclosed by one petal of r=cos(3θ)
6) Region below the polar axis and enclosed by r=1−sinθ
- Answer
- 12∫2ππ(1−sinθ)2dθ
7) Region in the first quadrant enclosed by r=2−cosθ
8) Region enclosed by the inner loop of r=2−3sinθ
- Answer
- ∫π/2sin−1(2/3)(2−3sinθ)2dθ
9) Region enclosed by the inner loop of r=3−4cosθ
10) Region enclosed by r=1−2cosθ and outside the inner loop
- Answer
- ∫π0(1−2cosθ)2dθ−∫π/30(1−2cosθ)2dθ
11) Region common to r=3sinθ and r=2−sinθ
12) Region common to r=2 and r=4cosθ
- Answer
- 4∫π/30dθ+16∫π/2π/3(cos2θ)dθ
13) Region common to r=3cosθ and r=3sinθ
In exercises 14 -26, find the area of the described region.
14) Enclosed by r=6sinθ
- Answer
- 9π units2
15) Above the polar axis enclosed by r=2+sinθ
16) Below the polar axis and enclosed by r=2−cosθ
- Answer
- 9π4 units2
17) Enclosed by one petal of r=4cos(3θ)
18) Enclosed by one petal of r=3cos(2θ)
- Answer
- 9π8 units2
19) Enclosed by r=1+sinθ
20) Enclosed by the inner loop of r=3+6cosθ
- Answer
- 18π−27√32 units2
21) Enclosed by r=2+4cosθ and outside the inner loop
22) Common interior of r=4sin(2θ) and r=2
- Answer
- 43(4π−3√3) units2
23) Common interior of r=3−2sinθ and r=−3+2sinθ
24) Common interior of r=6sinθ and r=3
- Answer
- 32(4π−3√3) units2
25) Inside r=1+cosθ and outside r=cosθ
26) Common interior of r=2+2cosθ and r=2sinθ
- Answer
- (2π−4) units2
In exercises 27 - 30, find a definite integral that represents the arc length.
27) r=4cosθ on the interval 0≤θ≤π2
28) r=1+sinθ on the interval 0≤θ≤2π
- Answer
- ∫2π0√(1+sinθ)2+cos2θdθ
29) r=2secθ on the interval 0≤θ≤π3
30) r=eθ on the interval 0≤θ≤1
- Answer
- √2∫10eθdθ
In exercises 31 - 35, find the length of the curve over the given interval.
31) r=6 on the interval 0≤θ≤π2
32) r=e3θ on the interval 0≤θ≤2
- Answer
- √103(e6−1) units
33) r=6cosθ on the interval 0≤θ≤π2
34) r=8+8cosθ on the interval 0≤θ≤π
- Answer
- 32 units
35) r=1−sinθ on the interval 0≤θ≤2π
In exercises 36 - 40, use the integration capabilities of a calculator to approximate the length of the curve.
36) [T] r=3θ on the interval 0≤θ≤π2
- Answer
- 6.238 units
37) [T] r=2θ on the interval π≤θ≤2π
38) [T] r=sin2(θ2) on the interval 0≤θ≤π
- Answer
- 2 units
39) [T] r=2θ2 on the interval 0≤θ≤π
40) [T] r=sin(3cosθ) on the interval 0≤θ≤π
- Answer
- 4.39 units
In exercises 41 - 43, use the familiar formula from geometry to find the area of the region described and then confirm by using the definite integral.
41) r=3sinθ on the interval 0≤θ≤π
42) r=sinθ+cosθ on the interval 0≤θ≤π
- Answer
- A=π(√22)2=π2 units2 and 12∫π0(1+2sinθcosθ)dθ=π2 units2
43) r=6sinθ+8cosθ on the interval 0≤θ≤π
In exercises 44 - 46, use the familiar formula from geometry to find the length of the curve and then confirm using the definite integral.
44) r=3sinθ on the interval 0≤θ≤π
- Answer
- C=2π(32)=3π units and ∫π03dθ=3π units
45) r=sinθ+cosθ on the interval 0≤θ≤π
46) r=6sinθ+8cosθ on the interval 0≤θ≤π
- Answer
- C=2π(5)=10π units and ∫π010dθ=10π units
47) Verify that if y=rsinθ=f(θ)sinθ then dydθ=f′(θ)sinθ+f(θ)cosθ.
In exercises 48 - 56, find the slope of a tangent line to a polar curve r=f(θ). Let x=rcosθ=f(θ)cosθ and y=rsinθ=f(θ)sinθ, so the polar equation r=f(θ) is now written in parametric form.
48) Use the definition of the derivative dydx=dy/dθdx/dθ and the product rule to derive the derivative of a polar equation.
- Answer
- dydx=f′(θ)sinθ+f(θ)cosθf′(θ)cosθ−f(θ)sinθ
49) r=1−sinθ;(12,π6)
50) r=4cosθ;(2,π3)
- Answer
- The slope is 1√3.
51) r=8sinθ;(4,5π6)
52) r=4+sinθ;(3,3π2)
- Answer
- The slope is 0.
53) r=6+3cosθ;(3,π)
54) r=4cos(2θ); tips of the leaves
- Answer
- At (4,0), the slope is undefined. At (−4,π2), the slope is 0.
55) r=2sin(3θ); tips of the leaves
56) r=2θ;(π2,π4)
- Answer
- The slope is undefined at θ=π4.
57) Find the points on the interval −π≤θ≤π at which the cardioid r=1−cosθ has a vertical or horizontal tangent line.
58) For the cardioid r=1+sinθ, find the slope of the tangent line when θ=π3.
- Answer
- Slope = −1.
In exercises 59 - 62, find the slope of the tangent line to the given polar curve at the point given by the value of θ.
59) r=3cosθ,θ=π3
60) r=θ,θ=π2
- Answer
- Slope is −2π.
61) r=lnθ,θ=e
62) [T] Use technology: r=2+4cosθ at θ=π6
- Answer
- Calculator answer: −0.836.
In exercises 63 - 66, find the points at which the following polar curves have a horizontal or vertical tangent line.
63) r=4cosθ
64) r2=4cos(2θ)
- Answer
- Horizontal tangent at (±√2,π6),(±√2,−π6).
65) r=2sin(2θ)
66) The cardioid r=1+sinθ
- Answer
- Horizontal tangents at π2,7π6,11π6.
Vertical tangents at π6,5π6 and also at the pole (0,0).
67) Show that the curve r=sinθtanθ (called a cissoid of Diocles) has the line x=1 as a vertical asymptote.