8.3E: Fourier Series II (Exercises)
- Page ID
- 43343
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercise 8.3.2 graph \(f\) and some partial sums of the required series.
Q8.3.1
In Exercises 8.3.1-8.3.10 find the Fourier cosine series.
1. \(f(x)=x^2\); \([0,L]\)
2. \(f(x)=1-x\); \([0,1]\)
3. \(f(x)=x^2-2Lx\); \([0,L]\)
4. \(f(x)=\sin kx\) (\(k\ne\) integer);\([0,\pi]\)
5. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\) \([0,L]\)
6. \(f(x)=x^2-L^2\); \([0,L]\)
7. \(f(x)=(x-1)^2\); \([0,1]\)
8. \(f(x)=e^x\); \([0,\pi]\)
9. \(f(x)=x(L-x)\); \([0,L]\)
10. \(f(x)=x(x-2L)\); \([0,L]\)
Q8.3.2
In Exercises 8.3.11-8.3.17 find the Fourier sine series
11. \(f(x)=1\); \([0,L]\)
12. \(f(x)=1-x\); \([0,1]\)
13. \(f(x)=\cos kx\) (\(k\ne\) integer); \([0,\pi]\)
14. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\) \([0,L]\)
15. \(f(x)= \left\{\begin{array}{cl} x,&0\le x\le{L\over2},\\L-x,&{L\over2}\le x\le L; \end{array}\right.\) \([0,L]\).
16. \(f(x)=x\sin x\); \([0,\pi]\)
17. \(f(x)=e^x\); \([0,\pi]\)
Q8.3.3
In Exercises 8.3.18-8.3.24 find the mixed Fourier cosine series.
18. \(f(x)=1\); \([0,L]\)
19. \(f(x)=x^2\); \([0,L]\)
20. \(f(x)=x\); \([0,1]\)
21. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\) \([0,L]\)
22. \(f(x)=\cos x\); \([0,\pi]\)
23. \(f(x)=\sin x\); \([0,\pi]\)
24. \(f(x)=x(L-x)\); \([0,L]\)
Q8.3.4
In Exercises 8.3.25-8.3.30 find the mixed Fourier sine series.
25. \(f(x)=1\); \([0,L]\)
26. \(f(x)=x^2\); \([0,L]\)
27. \(f(x)= \left\{\begin{array}{cl} 1,&0\le x\le{L\over2}\\0,&{L\over2}<x<L; \end{array}\right.\)\([0,L]\)
28. \(f(x)=\cos x\); \([0,\pi]\)
29. \(f(x)=\sin x\); \([0,\pi]\)
30. \(f(x)=x(L-x)\); \([0,L]\).
Q8.3.5
In Exercises 8.3.31-8.3.34 use Theorem 8.3.5a to find the Fourier cosine series of \(f\) on \([0,L]\).
31. \(f(x)=3x^2(x^2-2L^2)\)
32. \(f(x)=x^3(3x-4L)\)
33. \(f(x)=x^2(3x^2-8Lx+6L^2)\)
34. \(f(x)=x^2(x-L)^2\)
Q8.3.6
35.
- Prove Theorem 8.3.5b.
- In addition to the assumptions of Theorem 8.3.5b, suppose \(f''(0)=f''(L)=0\), \(f'''\) is continuous, and \(f^{(4)}\) is piecewise continuous on \([0,L]\). Show that \[b_n={2L^3\over n^4\pi^4}\int_0^L f^{(4)}(x)\sin{n\pi x\over L}\,dx, \quad n\ge1.\nonumber\]
Q8.3.7
In Exercises 8.3.36-8.3.41 use Theorem 8.3.5b or, where applicable, Exercises 8.1.35b to find the Fourier sine series of \(f\) on \([0,L]\).
36. \(f(x)=x(L-x)\)
37. \(f(x)=x^2(L-x)\)
38. \(f(x)=x(L^2-x^2)\)
39. \(f(x)=x(x^3-2Lx^2+L^3)\)
40. \(f(x)=x(3x^4-10L^2x^2+7L^4)\)
41. \(f(x)=x(3x^4-5Lx^3+2L^4)\)
Q8.3.8
42.
- Prove Theorem 8.3.5c.
- In addition to the assumptions of Theorem 8.3.5c, suppose \(f''(L)=0\), \(f''\) is continuous, and \(f'''\) is piecewise continuous on \([0,L]\). Show that \[c_n={16L^2\over(2n-1)^3\pi^3}\int_0^L f'''(x)\sin{(2n-1)\pi x\over2L} \,dx,\quad n\ge1.\nonumber \]
Q8.3.9
In Exercises 8.3.43-8.3.49 use Theorem 8.3.5c, or where applicable, Exercise 8.1.42b, to find the mixed Fourier cosine series of \(f\) on \([0,L]\).
43. \(f(x)=x^2(L-x)\)
44. \(f(x)=L^2-x^2\)
45. \(f(x)=L^3-x^3\)
46. \(f(x)=2x^3+3Lx^2-5L^3\)
47. \(f(x)=4x^3+3Lx^2-7L^3\)
48. \(f(x)=x^4-2Lx^3+L^4\)
49. \(f(x)=x^4-4Lx^3+6L^2x^2-3L^4\)
Q8.3.10
50.
- Prove Theorem 8.3.5d.
- In addition to the assumptions of Theorem 8.3.5d, suppose \(f''(0)=0\), \(f''\) is continuous, and \(f'''\) is piecewise continuous on \([0,L]\). Show that \[d_n=-{16L^2\over(2n-1)^3\pi^3}\int_0^L f'''(x)\cos{(2n-1)\pi x\over2L} \,dx,\quad n\ge1. \nonumber\]
Q8.3.11
In Exercises 8.3.51-8.3.56 use Theorem 8.3.5d or, where applicable, Exercise 8.3.50b, to find the mixed Fourier sine series of the \(f\) on \([0,L]\).
51. \(f(x)=x(2L -x)\)
52. \(f(x)=x^2(3L-2x)\)
53. \(f(x)=(x-L)^3+L^3\)
54. \(f(x)=x(x^2-3L^2)\)
55. \(f(x)=x^3(3x-4L)\)
56. \(f(x)=x(x^3-2Lx^2+2L^3)\)
Q8.3.12
57. Show that the mixed Fourier cosine series of \(f\) on \([0,L]\) is the restriction to \([0,L]\) of the Fourier cosine series of
\[f_3(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\-f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
on \([0,2L]\). Use this to prove Theorem 8.3.3.
58. Show that the mixed Fourier sine series of \(f\) on \([0,L]\) is the restriction to \([0,L]\) of the Fourier sine series of
\[f_4(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
on \([0,2L]\). Use this to prove Theorem 8.3.4.
59. Show that the Fourier sine series of \(f\) on \([0,L]\) is the restriction to \([0,L]\) of the Fourier sine series of
\[f_3(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\-f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
on \([0,2L]\).
60. Show that the Fourier cosine series of \(f\) on \([0,L]\) is the restriction to \([0,L]\) of the Fourier cosine series of
\[f_4(x)= \left\{\begin{array}{cl} f(x),&0\le x\le L,\\f(2L-x),&L< x\le 2L \end{array}\right.\nonumber\]
on \([0,2L]\).