Skip to main content
Mathematics LibreTexts

7.2E: The Inverse Laplace Transform (Exercises)

  • Page ID
    134370
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q7.2.1

    1. Find the inverse Laplace transform.

    1. \( {3\over(s-7)^4}\)
    2. \( {2s-4\over s^2-4s+13}\)
    3. \( {1\over s^2+4s+20}\)
    4. \( {2\over s^2+9}\)
    5. \( {s^2-1\over(s^2+1)^2}\)
    6. \( {1\over(s-2)^2-4}\)
    7. \( {12s-24\over(s^2-4s+85)^2}\)
    8. \( {2\over(s-3)^2-9}\)
    9. \( {s^2-4s+3\over(s^2-4s+5)^2}\)

    2. Find the inverse Laplace transform.

    1. \( {2s+3\over(s-7)^4}\)
    2. \( {s^2-1\over(s-2)^6}\)
    3. \( {s+5\over s^2+6s+18}\)
    4. \( {2s+1\over s^2+9}\)
    5. \( {s\over s^2+2s+1}\)
    6. \( {s+1\over s^2-9}\)
    7. \( {s^3+2s^2-s-3\over(s+1)^4}\)
    8. \( {2s+3\over(s-1)^2+4}\)
    9. \( {1\over s}-{s\over s^2+1}\)
    10. \( {3s+4\over s^2-1}\)
    11. \( {3\over s-1}+{4s+1\over s^2+9}\)
    12. \( {3\over(s+2)^2}-{2s+6\over s^2+4}\)

    3. Find the inverse Laplace transform.

    1. \( {-s^2+s+5\over s^3+s^2-4s-4}\)
    2. \( {5s-4\over s^3-s^2-2s}\)
    3. \( {3s^2+2s+1\over(s^2+1)(s^2+2s+2)}\)
    4. \( {-s+1\over(4s^2+1)(s^2+1)}\)
    5. \( {34-17s\over(2s-1)(s^2-2s+5)}\)
    6. \( {s-6\over(s^2-1)(s^2+4)}\)
    7. \( {3s+2\over(s^2+1)(s-1)^2}\)

    This page titled 7.2E: The Inverse Laplace Transform (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.