# 8.5E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### Practice Makes Perfect

##### Exercise SET A: divide square roots

In the following exercises, simplify.

1. a. $$\dfrac{\sqrt{128}}{\sqrt{72}}\quad$$ b. $$\dfrac{\sqrt[3]{128}}{\sqrt[3]{54}}$$

2. a. $$\dfrac{\sqrt{48}}{\sqrt{75}}\quad$$ b. $$\dfrac{\sqrt[3]{81}}{\sqrt[3]{24}}$$

3. a.$$\dfrac{\sqrt{200 m^{5}}}{\sqrt{98 m}}\quad$$ b. $$\dfrac{\sqrt[3]{54 y^{2}}}{\sqrt[3]{2 y^{5}}}$$

4. a. $$\dfrac{\sqrt{108 n^{7}}}{\sqrt{243 n^{3}}}\quad$$ b. $$\dfrac{\sqrt[3]{54 y}}{\sqrt[3]{16 y^{4}}}$$

5. a. $$\dfrac{\sqrt{75 r^{3}}}{\sqrt{108 r^{7}}}\quad$$ b. $$\dfrac{\sqrt[3]{24 x^{7}}}{\sqrt[3]{81 x^{4}}}$$

6. a. $$\dfrac{\sqrt{196 q}}{\sqrt{484 q^{5}}}\quad$$ b. $$\dfrac{\sqrt[3]{16 m^{4}}}{\sqrt[3]{54 m}}$$

7. a. $$\dfrac{\sqrt{108 p^{5} q^{2}}}{\sqrt{3 p^{3} q^{6}}}\quad$$ b. $$\dfrac{\sqrt[3]{-16 a^{4} b^{-2}}}{\sqrt[3]{2 a^{-2} b}}$$

8. a. $$\dfrac{\sqrt{98 r s^{10}}}{\sqrt{2 r^{3} s^{4}}}\quad$$ b. $$\dfrac{\sqrt[3]{-375 y^{4} z^{2}}}{\sqrt[3]{3 y^{-2} z^{4}}}$$

9. a. $$\dfrac{\sqrt{320 m n^{-5}}}{\sqrt{45 m^{-7} n^{3}}}\quad$$ b. $$\dfrac{\sqrt[3]{16 x^{4} y^{-2}}}{\sqrt[3]{-54 x^{-2} y^{4}}}$$

10. a. $$\dfrac{\sqrt{810 c^{-3} d^{7}}}{\sqrt{1000 c d}}\quad$$ b. $$\dfrac{\sqrt[3]{24 a^{7} b^{-1}}}{\sqrt[3]{-81 a^{-2} b^{2}}}$$

11. $$\dfrac{\sqrt{56 x^{5} y^{4}}}{\sqrt{2 x y^{3}}}$$

12. $$\dfrac{\sqrt{72 a^{3} b^{6}}}{\sqrt{3 a b^{3}}}$$

13. $$\dfrac{\sqrt[3]{48 a^{3} b^{6}}}{\sqrt[3]{3 a^{-1} b^{3}}}$$

14. $$\dfrac{\sqrt[3]{162 x^{-3} y^{6}}}{\sqrt[3]{2 x^{3} y^{-2}}}$$

1. a. $$\dfrac{4}{3}$$ b. $$\dfrac{4}{3}$$

3. a. $$\dfrac{10 m^{2}}{7}$$ b. $$\dfrac{3}{y}$$

5. a. $$\dfrac{5}{6 r^{2}}$$ b. $$\dfrac{2x}{3}$$

7. a. $$\dfrac{6 p}{q^{2}}$$ b. $$-\dfrac{2 a^{2}}{b}$$

9. a. $$\dfrac{8 m^{4}}{3 n^{4}}$$ b. $$-\dfrac{2 x^{2}}{3 y^{2}}$$

11. $$4 x^{4} \sqrt{7 y}$$

13. $$2 a b \sqrt[3]{2 a}$$

##### Exercise SET B: Rationalize a One Term Denominator

In the following exercises, rationalize the denominator.

15. a. $$\dfrac{10}{\sqrt{6}}\quad$$ b. $$\sqrt{\dfrac{4}{27}}\quad$$ c. $$\dfrac{10}{\sqrt{5 x}}$$

16. a. $$\dfrac{8}{\sqrt{3}}\quad$$ b. $$\sqrt{\dfrac{7}{40}}\quad$$ c. $$\dfrac{8}{\sqrt{2 y}}$$

17. a. $$\dfrac{6}{\sqrt{7}}\quad$$ b. $$\sqrt{\dfrac{8}{45}}\quad$$ c. $$\dfrac{12}{\sqrt{3 p}}$$

18. a. $$\dfrac{4}{\sqrt{5}}\quad$$ b. $$\sqrt{\dfrac{27}{80}}\quad$$ c. $$\dfrac{18}{\sqrt{6 q}}$$

19. a. $$\dfrac{1}{\sqrt[3]{5}}\quad$$ b. $$\sqrt[3]{\dfrac{5}{24}}\quad$$ c. $$\dfrac{4}{\sqrt[3]{36 a}}$$

20. a. $$\dfrac{1}{\sqrt[3]{3}}\quad$$ b. $$\sqrt[3]{\dfrac{5}{32}}\quad$$ c. $$\dfrac{7}{\sqrt[3]{49 b}}$$

21. a. $$\dfrac{1}{\sqrt[3]{11}}\quad$$ b. $$\sqrt[3]{\dfrac{7}{54}}\quad$$ c. $$\dfrac{3}{\sqrt[3]{3 x^{2}}}$$

22. a. $$\dfrac{1}{\sqrt[3]{13}}\quad$$ b. $$\sqrt[3]{\dfrac{3}{128}}\quad$$ c. $$\dfrac{3}{\sqrt[3]{6 y^{2}}}$$

23. a. $$\dfrac{1}{\sqrt[4]{7}}\quad$$ b. $$\sqrt[4]{\dfrac{5}{32}}\quad$$ c. $$\dfrac{4}{\sqrt[4]{4 x^{2}}}$$

24. a. $$\dfrac{1}{\sqrt[4]{4}}\quad$$ b. $$\sqrt[4]{\dfrac{9}{32}}\quad$$ c. $$\dfrac{6}{\sqrt[4]{9 x^{3}}}$$

25. a. $$\dfrac{1}{\sqrt[4]{9}}\quad$$ b. $$\sqrt[4]{\dfrac{25}{128}}\quad$$ c. $$\dfrac{6}{\sqrt[4]{27 a}}$$

26. a. $$\dfrac{1}{\sqrt[4]{8}}\quad$$ b. $$\sqrt[4]{\dfrac{27}{128}}\quad$$ c. $$\dfrac{16}{\sqrt[4]{64 b^{2}}}$$

15. a. $$\dfrac{5 \sqrt{6}}{3}$$ b. $$\dfrac{2 \sqrt{3}}{9}$$ c. $$\dfrac{2 \sqrt{5 x}}{x}$$

17. a. $$\dfrac{6 \sqrt{7}}{7}$$ b. $$\dfrac{2 \sqrt{10}}{15}$$ c. $$\dfrac{4 \sqrt{3 p}}{p}$$

19. a. $$\dfrac{\sqrt[3]{25}}{5}$$ b. $$\dfrac{\sqrt[3]{45}}{6}$$ c. $$\dfrac{2 \sqrt[3]{6 a^{2}}}{3 a}$$

21. a. $$\dfrac{\sqrt[3]{121}}{11}$$ b. $$\dfrac{\sqrt[3]{28}}{6}$$ c. $$\dfrac{\sqrt[3]{9 x}}{x}$$

23. a. $$\dfrac{\sqrt[4]{343}}{7}$$ b. $$\dfrac{\sqrt[4]{40}}{4}$$ c. $$\dfrac{2 \sqrt[4]{4 x^{2}}}{x}$$

25. a. $$\dfrac{\sqrt[4]{9}}{3}$$ b. $$\dfrac{\sqrt[4]{50}}{4}$$ c. $$\dfrac{2 \sqrt[4]{3 a^{2}}}{a}$$

##### Exercise SET C: Rationalize a Two Term Denominator

In the following exercises, simplify.

27. $$\dfrac{8}{1-\sqrt{5}}$$

28. $$\dfrac{7}{2-\sqrt{6}}$$

29. $$\dfrac{6}{3-\sqrt{7}}$$

30. $$\dfrac{5}{4-\sqrt{11}}$$

31. $$\dfrac{\sqrt{3}}{\sqrt{m}-\sqrt{5}}$$

32. $$\dfrac{\sqrt{5}}{\sqrt{n}-\sqrt{7}}$$

33. $$\dfrac{\sqrt{2}}{\sqrt{x}-\sqrt{6}}$$

34. $$\dfrac{\sqrt{7}}{\sqrt{y}+\sqrt{3}}$$

35. $$\dfrac{\sqrt{r}+\sqrt{5}}{\sqrt{r}-\sqrt{5}}$$

36. $$\dfrac{\sqrt{s}-\sqrt{6}}{\sqrt{s}+\sqrt{6}}$$

37. $$\dfrac{\sqrt{x}+\sqrt{8}}{\sqrt{x}-\sqrt{8}}$$

38. $$\dfrac{\sqrt{m}-\sqrt{3}}{\sqrt{m}+\sqrt{3}}$$

27. $$-2(1+\sqrt{5})$$

29. $$3(3+\sqrt{7})$$

31. $$\dfrac{\sqrt{3}(\sqrt{m}+\sqrt{5})}{m-5}$$

33. $$\dfrac{\sqrt{2}(\sqrt{x}+\sqrt{6})}{x-6}$$

35. $$\dfrac{(\sqrt{r}+\sqrt{5})^{2}}{r-5}$$

37. $$\dfrac{(\sqrt{x}+2 \sqrt{2})^{2}}{x-8}$$

##### Exercise SET D: writing exercises
1. Simplify $$\sqrt{\dfrac{27}{3}}$$ and explain all your steps.
2. Simplify $$\sqrt{\dfrac{27}{5}}$$ and explain all your steps.
3. Why are the two methods of simplifying square roots different?
1. Explain what is meant by the word rationalize in the phrase, "rationalize a denominator."
2. Explain why multiplying $$\sqrt{2x}-3$$ by its conjugate results in an epxression with no radicals.
3. Explain why multiplying $$\dfrac{7}{\sqrt[3]{x}}$$ by $$\dfrac{\sqrt[3]{x}}{\sqrt[3]{x}}$$ does not rationalize the denominator.