Skip to main content
Mathematics LibreTexts

1.3e: Exercises - Rational Equations

  • Page ID
    38265
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A: Rational Expression or Equation?

    Exercise \(\PageIndex{A}\)

    \( \bigstar \) Simplify or solve, whichever is appropriate

    1. \(\dfrac { 1 } { x } + \dfrac { 2 } { x - 3 } = - \dfrac { 2 } { 3 } \\[4pt] \)
    2. \(\dfrac { 1 } { x - 3 } - \dfrac { 3 } { 4 } = \dfrac { 1 } { x } \\[4pt] \)
    1. \(\dfrac { x - 2 } { 3 x - 1 } - \dfrac { 2 - x } { x } \\[4pt] \)
    2. \(\dfrac { 5 } { 2 } + \dfrac { x } { 2 x - 1 } - \dfrac { 1 } { 2 x } \\[4pt] \)
    1. \(\dfrac { x - 1 } { 3 x } + \dfrac { 2 } { x + 1 } - \dfrac { 5 } { 6 } \\[4pt] \)
    2. \(\dfrac { x - 1 } { 3 x } + \dfrac { 2 } { x + 1 } = \dfrac { 5 } { 6 } \\[4pt] \)
    1. \(\dfrac { 2 x + 1 } { 2 x - 3 } + 2 = \dfrac { 1 } { 2 x } \\[4pt] \)
    2. \(5 - \dfrac { 3 x + 1 } { 2 x } + \dfrac { 1 } { x + 1 } \\[4pt] \)
    Answers to Odd Exercises:
    1. Solve; \(- 3 , \dfrac { 3 } { 2 } \) 3. Simplify; \(\dfrac { ( 4 x - 1 ) ( x - 2 ) } { x ( 3 x - 1 ) } \) 5. Simplify; \(- \dfrac { ( x - 2 ) ( 3 x - 1 ) } { 6 x ( x + 1 ) } \) 7. Solve; \(\dfrac{1}{2}  \)

    B: Solve Rational Equations

    Exercise \(\PageIndex{B}\)

    \( \bigstar \) Solve

    1. \(\dfrac { 3 } { x } + 2 = \dfrac { 1 } { 3 x } \\[4pt] \)
    2. \(5 - \dfrac { 1 } { 2 x } = - \dfrac { 1 } { x } \\[4pt] \)
    3. \(\dfrac { 7 } { x ^ { 2 } } + \dfrac { 3 } { 2 x } = \dfrac { 1 } { x ^ { 2 } } \\[4pt] \)
    4. \(\dfrac { 4 } { 3 x ^ { 2 } } + \dfrac { 1 } { 2 x } = \dfrac { 1 } { 3 x ^ { 2 } } \\[4pt] \)
    1. \(\dfrac { 1 } { 6 } + \dfrac { 2 } { 3 x } = \dfrac { 7 } { 2 x ^ { 2 } } \\[4pt] \)
    2. \(\dfrac { 1 } { 12 } - \dfrac { 1 } { 3 x } = \dfrac { 1 } { x ^ { 2 } } \\[4pt] \)
    3. \(2 + \dfrac { 3 } { x } + \dfrac { 7 } { x ( x - 3 ) } = 0 \\[4pt] \)
    4. \(\dfrac { 20 } { x } - \dfrac { x + 44 } { x ( x + 2 ) } = 3 \\[4pt] \)
    1. \(\dfrac { 2 x } { 2 x - 3 } + \dfrac { 4 } { x } = \dfrac { x - 18 } { x ( 2 x - 3 ) } \\[4pt] \)
    2. \(\dfrac { 2 x } { x - 5 } + \dfrac {1 } { x } =  \dfrac { 9x+5 } { x (x-5)} \\[4pt] \)
    3. \(\dfrac { 4 } { 4 x - 1 } - \dfrac { 1 } { x - 1 } = \dfrac { 2 } { 4 x - 1 } \\[4pt] \)
    4. \(\dfrac { 5 } { 2 x - 3 } - \dfrac { 1 } { x + 3 } = \dfrac { 2 } { 2 x - 3 } \\[4pt] \)
    Answers to Odd Exercises:
    11. \(−\dfrac{4}{3}  \) 13. \(−4  \) 15. \(−7, 3  \) 17. \(−\dfrac{1}{2} , 2  \) 19. \(−2, −\dfrac{3}{2} \) 21. \(−\dfrac{1}{2}  \)

    \( \bigstar \) Solve

    1. \(\dfrac { 4 x } { x - 3 } + \dfrac { 4 } { x ^ { 2 } - 2 x - 3 } = - \dfrac { 1 } { x + 1 } \\[4pt] \)
    2. \(\dfrac {  x } { x - 2 } - \dfrac { 2 } { x + 4 } = \dfrac { 12 } { x ^ { 2 } + 2 x - 8 } \\[4pt] \)
    3. \(\dfrac { x } { x - 8 } - \dfrac { 8 } { x - 1 } = \dfrac { 56 } { x ^ { 2 } - 9 x + 8 } \\[4pt] \)
    4. \(\dfrac { 2 x } { x - 1 } + \dfrac { 9 } { 3 x - 1 } + \dfrac { 11 } { 3 x ^ { 2 } - 4 x + 1 } = 0 \\[4pt] \)
    1. \(\dfrac { 3 x } { x - 2 } - \dfrac { 14 } { 2 x ^ { 2 } - x - 6 } = \dfrac { 2 } { 2 x + 3 } \\[4pt] \)
    2. \(\dfrac { x } { x - 4 } - \dfrac { 4 } { x - 5 } = - \dfrac { 4 } { x ^ { 2 } - 9 x + 20 } \\[4pt] \)
    3. \(\dfrac { 2 x } { 5 + x } - \dfrac { 1 } { 5 - x } = \dfrac { 2 x } { x ^ { 2 } - 25 } \\[4pt] \)
    1. \(\dfrac { 2 x } { 2 x + 3 } - \dfrac { 1 } { 2 x - 3 } = \dfrac { 6 } { 9 - 4 x ^ { 2 } } \\[4pt] \)
    2. \(1 + \dfrac { 1 } { x + 1 } = \dfrac { 8 } { x - 1 } - \dfrac { 16 } { x ^ { 2 } - 1 } \\[4pt] \)
    3. \(1 - \dfrac { 1 } { 3 x + 5 } = \dfrac { 2 x } { 3 x - 5 } - \dfrac { 2 ( 6 x + 5 ) } { 9 x ^ { 2 } - 25 } \\[4pt] \)
    Answers to Odd Exercises:
    23. \(−\dfrac{1}{4} \) 25. \(Ø  \) 27. \(−2, \dfrac{5}{6} \) 29. \(\dfrac{1}{2} \) 31. \(6  \)

    \( \bigstar \) Solve

    1. \(2 x ^ { - 1 } = 2 x ^ { - 2 } - x ^ { - 1 } \\[4pt] \)
    2. \(3 + x ( x + 1 ) ^ { - 1 } = 2 ( x + 1 ) ^ { - 1 } \\[4pt] \)
    3. \(x ^ { - 2 } - 64 = 0 \\[4pt] \)
    1. \(1 - 4 x ^ { - 2 } = 0 \\[4pt] \)
    2. \(x - ( x + 2 ) ^ { - 1 } = - 2 \\[4pt] \)
    3. \(2 x - 9 ( 2 x - 1 ) ^ { - 1 } = 1 \\[4pt] \)
    1. \(2 x ^ { - 2 } + ( x - 12 ) ^ { - 1 } = 0 \\[4pt] \)
    2. \(- 2 x ^ { - 2 } + 3 ( x + 4 ) ^ { - 1 } = 0 \\[4pt] \)
    Answers to Odd Exercises:
    33. \(\dfrac{2}{3}  \) 35. \(\pm \dfrac { 1 } { 8 }  \) 37. \(- 3 , - 1  \) 39. \(- 6,4  \)

    \( \bigstar \) Solve

    1. \(\dfrac { 5 } { n } = - \dfrac { 3 } { n - 2 } \\[4pt] \)
    2. \(\dfrac { 2 n - 1 } { 2 n } = - \dfrac { 1 } { 2 } \\[4pt] \)
    3. \(- 3 = \dfrac { 5 n + 2 } { 3 n } \\[4pt] \)
    4. \(\dfrac { n + 1 } { 2 n - 1 } = \dfrac { 1 } { 3 } \\[4pt] \)
    1. \(\dfrac { x + 2 } { x - 5 } = \dfrac { x + 4 } { x - 2 } \\[4pt] \)
    2. \(\dfrac { x + 1 } { x + 5 } = \dfrac { x - 5 } { x } \\[4pt] \)
    3. \(\dfrac { 2 x + 1 } { 6 x - 1 } = \dfrac { x + 5 } { 3 x - 2 } \\[4pt] \)
    4. \(\dfrac { 6 ( 2 x + 3 ) } { 4 x - 1 } = \dfrac { 3 x } { x + 2 } \\[4pt] \)
    1. \(\dfrac { 3 ( x + 1 ) } { 1 - x } = \dfrac { x + 3 } { x + 1 } \\[4pt] \)
    2. \(\dfrac { 8 ( x - 2 ) } { x + 1 } = \dfrac { 5 - x } { x - 2 } \\[4pt] \)
    3. \(\dfrac { x + 3 } { x + 7 } = \dfrac { x + 3 } { 3 ( 5 - x ) } \\[4pt] \)
    4. \(\dfrac { x + 1 } { x + 4 } = \dfrac { - 8 ( x + 4 ) } { x + 7 } \\[4pt] \)
    Answers to Odd Exercises:
    41. \(\dfrac{5}{4} \) 43. \(-\dfrac{1}{7}  \) 45. \(-16  \) 47. \(\dfrac{1}{10} \) 49. \(-2,0 \)
     
    51. \(-3,2  \)

    \( \bigstar \) Solve

    1. \(\dfrac { x } { x - 2 } - \dfrac { 3 } { x + 8 } = \dfrac { x + 2 } { x + 8 } + \dfrac { 5 ( x + 3 ) } { x ^ { 2 } + 6 x - 16 } \\[4pt] \)
    2. \(\dfrac { 2 x } { x - 10 } + \dfrac { 1 } { x - 3 } = \dfrac { x + 3 } { x - 10 } + \dfrac { x ^ { 2 } - 5 x + 5 } { x ^ { 2 } - 13 x + 30 } \\[4pt] \)
    3. \(\dfrac { 5 } { x ^ { 2 } + 9 x + 18 } + \dfrac { x + 3 } { x ^ { 2 } + 7 x + 6 } = \dfrac { 5 } { x ^ { 2 } + 4 x + 3 } \\[4pt] \)
    4. \(\dfrac { 1 } { x ^ { 2 } + 4 x - 60 } + \dfrac { x - 6 } { x ^ { 2 } + 16 x + 60 } = \dfrac { 1 } { x ^ { 2 } - 36 } \\[4pt] \)
    5. \(\dfrac { 4 } { x ^ { 2 } + 10 x + 21 } + \dfrac { 2 ( x + 3 ) } { x ^ { 2 } + 6 x - 7 } = \dfrac { x + 7 } { x ^ { 2 } + 2 x - 3 } \\[4pt] \)
    1. \(\dfrac { x - 1 } { x ^ { 2 } - 11 x + 28 } + \dfrac { x - 1 } { x ^ { 2 } - 5 x + 4 } = \dfrac { x - 4 } { x ^ { 2 } - 8 x + 7 } \\[4pt] \)
    2. \(\dfrac { 5 } { x ^ { 2 } + 5 x + 4 } + \dfrac { x + 1 } { x ^ { 2 } + 3 x - 4 } = \dfrac { 5 } { x ^ { 2 } - 1 } \\[4pt] \)
    3. \(\dfrac { 1 } { x ^ { 2 } - 2 x - 63 } + \dfrac { x - 9 } { x ^ { 2 } + 10 x + 21 } = \dfrac { 1 } { x ^ { 2 } - 6 x - 27 } \\[4pt] \)
    4. \(\dfrac { 4 } { x ^ { 2 } - 4 } + \dfrac { 2 ( x - 2 ) } { x ^ { 2 } - 4 x - 12 } = \dfrac { x + 2 } { x ^ { 2 } - 8 x + 12 } \\[4pt] \)
    5. \(\dfrac { x + 2 } { x ^ { 2 } - 5 x + 4 } + \dfrac { x + 2 } { x ^ { 2 } + x - 2 } = \dfrac { x - 1 } { x ^ { 2 } - 2 x - 8 } \\[4pt] \)
    Answers to Odd Exercises:
    53. \(Ø\) 55. \(−8, 2  \) 57. \(5  \) 59. \(−6, 4 \) 61. \(10 \)

    \( \bigstar \)


    1.3e: Exercises - Rational Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?