# 1.5e: Exercises - Solve Equations with Rational Exponents

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### A: Solve Equations with Rational Exponents I

Exercise $$\PageIndex{A}$$

$$\bigstar$$ Solve.

 $$x ^ { 1 / 2 } - 10 = 0$$ $$x ^ { 1 / 2 } - 6 = 0$$ $$x ^ { 1 / 3 } + 2 = 0$$ $$x ^ { 1 / 3 } + 4 = 0$$ $$( x - 1 ) ^ { 1 / 2 } - 3 = 0$$ $$( x + 2 ) ^ { 1 / 2 } - 6 = 0$$ $$( 2 x - 1 ) ^ { 1 / 3 } + 3 = 0$$ $$( 3 x - 1 ) ^ { 1 / 3 } - 2 = 0$$ $$( 4 x + 15 ) ^ { 1 / 2 } - 2 x = 0$$ $$( 3 x + 2 ) ^ { 1 / 2 } - 3 x = 0$$ $$( 2 x + 12 ) ^ { 1 / 2 } - x = 6$$ $$( 4 x + 36 ) ^ { 1 / 2 } - x = 9$$ $$2 ( 5 x + 26 ) ^ { 1 / 2 } = x + 10$$ $$3 ( x - 1 ) ^ { 1 / 2 } = x + 1$$ $$x ^ { 1 / 2 } + ( 3 x - 2 ) ^ { 1 / 2 } = 2$$ $$( 6 x + 1 ) ^ { 1 / 2 } - ( 3 x ) ^ { 1 / 2 } = 1$$ $$( 3 x + 7 ) ^ { 1 / 2 } + ( x + 3 ) ^ { 1 / 2 } - 2 = 0$$ $$( 3 x ) ^ { 1 / 2 } + ( x + 1 ) ^ { 1 / 2 } - 5 = 0$$

1. $$\{100\}$$     3. $$\{−8\}$$     5. $$\{10\}$$     7. $$\{−13\}$$     9. $$\{\frac{5}{2}\}$$     11. $$\{−6, −4\}$$     13. $$\{−2, 2\}$$     15. $$\{1\}$$     17. $$\{−2\}$$.

### B: Solve Equations with Rational Exponents II

Exercise $$\PageIndex{B}$$

$$\bigstar$$ Solve

 $$(x-6)^\frac{5}{7}=32$$ $$(x+3)^\frac{3}{7}+2=10$$ $$(x-1)^\frac{7}{3}=128$$ $$(x+2)^\frac{7}{5}+128=0$$ $$(x-2)^\frac{3}{5} - 4=4$$ $$(5x+7)^\frac{3}{5}=8$$ $$8x^\frac{5}{3}-24=0$$ $$(x+1)^\frac{5}{3}=32$$ $$3x^\frac{1}{3}+5=17$$ $$7x^\frac{3}{7}+9=65$$ $$x^\frac{4}{3}+11=92$$ $$x^\frac{2}{3}+1=65$$ $$(x-4)^\frac{2}{3}=16$$ $$(x+5)^\frac{2}{3}=4$$ $$8(3x-1)^\frac{2}{3}=200$$ $$5x^\frac{2}{3}=45$$ $$(7x−3)^\frac{2}{5}=4$$ $$(7x−8)^\frac{2}{3}=4(x−5)^\frac{2}{3}$$ $$3x^\frac{5}{2}=96$$ $$x^\frac{3}{2}-2=6$$ $$2x^\frac{3}{2}=54$$ $$6x^\frac{5}{2}-12=0$$ $$6x^\frac{3}{2}-141=1917$$ $$5x^\frac{3}{2}−3 = 4997$$ $$-2(x-5)^\frac{3}{4}+48=-202$$ $$2x^\frac{3}{4}=686$$ $$(4x+5)^\frac{1}{2}=x−4$$ $$x^3=(4x−3)^\frac{3}{2}$$ $$x^\frac{5}{2}=16x^\frac{1}{2}$$ $$(x^2-x-4)^\frac{3}{4}-2=6$$ $$(x^2-3x+3)^\frac{3}{2}-1=0$$
21. $$\{134\}$$     23. $$\{9\}$$     25. $$\{34\}$$     27. $$\ \{3^{\frac{3}{5}}\}$$     29. $$\{ 64 \}$$     31. $$\{27, -27\}$$     33. $$\{−60, 68\}$$     35. $$\{42, \; -\frac{124}{3}\}$$     37. $$\{5, \frac{-29}{7}\}$$     39. $$\{4 \}$$     41. $$\{ 9 \}$$     43. $$\{49\}$$     45. $$\{630\}$$     47. $$\{11\}$$     49. $$\{ 0, 4, -4\}$$     51. $$\{1, 2\}$$ .
$$\star$$