Skip to main content
Mathematics LibreTexts

1.5e: Exercises - Solve Equations with Rational Exponents

  • Page ID
    45458
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A: Solve Equations with Rational Exponents I

    Exercise \(\PageIndex{A}\) 

    \( \bigstar \) Solve.

    1. \(x ^ { 1 / 2 } - 10 = 0\)
    2. \(x ^ { 1 / 2 } - 6 = 0\)
    3. \(x ^ { 1 / 3 } + 2 = 0\)
    4. \(x ^ { 1 / 3 } + 4 = 0\)
    5. \(( x - 1 ) ^ { 1 / 2 } - 3 = 0\)
    1. \(( x + 2 ) ^ { 1 / 2 } - 6 = 0\)
    2. \(( 2 x - 1 ) ^ { 1 / 3 } + 3 = 0\)
    3. \(( 3 x - 1 ) ^ { 1 / 3 } - 2 = 0\)
    4. \(( 4 x + 15 ) ^ { 1 / 2 } - 2 x = 0\)
    5. \(( 3 x + 2 ) ^ { 1 / 2 } - 3 x = 0\)
    1. \(( 2 x + 12 ) ^ { 1 / 2 } - x = 6\)
    2. \(( 4 x + 36 ) ^ { 1 / 2 } - x = 9\)
    3. \(2 ( 5 x + 26 ) ^ { 1 / 2 } = x + 10\)
    4. \(3 ( x - 1 ) ^ { 1 / 2 } = x + 1\)
    1. \(x ^ { 1 / 2 } + ( 3 x - 2 ) ^ { 1 / 2 } = 2\)
    2. \(( 6 x + 1 ) ^ { 1 / 2 } - ( 3 x ) ^ { 1 / 2 } = 1\)
    3. \(( 3 x + 7 ) ^ { 1 / 2 } + ( x + 3 ) ^ { 1 / 2 } - 2 = 0\)
    4. \(( 3 x ) ^ { 1 / 2 } + ( x + 1 ) ^ { 1 / 2 } - 5 = 0\)
    Answers to odd exercises:

    1. \( \{100\} \)     3. \( \{−8\} \)     5. \( \{10\} \)     7. \( \{−13\} \)     9. \( \{\frac{5}{2}\} \)     11. \( \{−6, −4\} \)     13. \( \{−2, 2\} \)     15. \( \{1\} \)     17. \( \{−2\} \).

    B: Solve Equations with Rational Exponents II

    Exercise \(\PageIndex{B}\) 

    \( \bigstar \) Solve

    1. \( (x-6)^\frac{5}{7}=32\)
    2. \( (x+3)^\frac{3}{7}+2=10\)
    3. \( (x-1)^\frac{7}{3}=128\)
    4. \( (x+2)^\frac{7}{5}+128=0\)
    5. \( (x-2)^\frac{3}{5} - 4=4\)
    6. \( (5x+7)^\frac{3}{5}=8 \)
    7. \( 8x^\frac{5}{3}-24=0\)
    8. \( (x+1)^\frac{5}{3}=32\)
    1. \( 3x^\frac{1}{3}+5=17 \)
    2. \( 7x^\frac{3}{7}+9=65 \)
    3. \( x^\frac{4}{3}+11=92\)
    4. \( x^\frac{2}{3}+1=65\)
    5. \( (x-4)^\frac{2}{3}=16\)
    6. \( (x+5)^\frac{2}{3}=4\)
    7. \( 8(3x-1)^\frac{2}{3}=200\)
    8. \( 5x^\frac{2}{3}=45 \)
    1. \( (7x−3)^\frac{2}{5}=4 \)
    2. \( (7x−8)^\frac{2}{3}=4(x−5)^\frac{2}{3} \)
    3. \( 3x^\frac{5}{2}=96\)
    4. \( x^\frac{3}{2}-2=6\)
    5. \( 2x^\frac{3}{2}=54 \)
    6. \( 6x^\frac{5}{2}-12=0\)
    7. \( 6x^\frac{3}{2}-141=1917\)
    8. \( 5x^\frac{3}{2}−3 = 4997 \)
    1. \( -2(x-5)^\frac{3}{4}+48=-202\)
    2. \( 2x^\frac{3}{4}=686 \)
    3. \( (4x+5)^\frac{1}{2}=x−4 \)
    4. \( x^3=(4x−3)^\frac{3}{2} \)
    5. \( x^\frac{5}{2}=16x^\frac{1}{2} \)
    6. \( (x^2-x-4)^\frac{3}{4}-2=6 \)
    7. \( (x^2-3x+3)^\frac{3}{2}-1=0 \)
    Answers to odd exercises:

    21. \( \{134\} \)     23. \( \{9\} \)     25. \( \{34\} \)     27. \( \ \{3^{\frac{3}{5}}\} \)     29. \( \{ 64 \}  \)     31. \( \{27, -27\} \)     33. \( \{−60, 68\} \)     35. \( \{42, \; -\frac{124}{3}\} \)     37. \( \{5, \frac{-29}{7}\} \)     39. \( \{4 \} \)     41. \( \{ 9 \} \)     43. \( \{49\} \)     45. \( \{630\} \)     47. \( \{11\} \)     49. \( \{ 0, 4, -4\} \)     51. \( \{1, 2\} \) .

    \( \star \)


    1.5e: Exercises - Solve Equations with Rational Exponents is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?