Skip to main content
Mathematics LibreTexts

3.4e: Exercises - Polynomial Graphs

  • Page ID
    45428
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A: Concepts 

    Exercise \(\PageIndex{A}\)

    1) What is the difference between an \(x\)-intercept and a zero of a polynomial function \(f\)?

    2) If a polynomial function of degree \(n\) has \(n\) distinct zeros, what do you know about the graph of the function?

    3) What is the relationship between the degree of a polynomial function and the maximum number of turning points in its graph? .

    4) Explain how the factored form of the polynomial helps us in graphing it.

    5) If the graph of a polynomial just touches the \(x\)-axis and then changes direction, what can we conclude about the factored form of the polynomial?

    Answers to odd exercises:

    1. The \(x\)-intercept is where the graph of the function crosses the \(x\)-axis, and the zero of the function is the input value for which \(f(x)=0\).

    3. The maximum number of turning points is one less than the degree of the polynomial.

    5. There will be a factor raised to an even power.

    B: Multiplicity from an Equation

    Exercise \(\PageIndex{B}\)

    \( \bigstar \) Find the zeros and give the multiplicity of each.

    6) \(f(x)=(x+2)^3(x−3)^2\)

    7) \(f(x)=x^2(2x+3)^5(x−4)^2\)

    8) \(f(x)=x^3(x−1)^3(x+2)\)

    9) \(f(x)=x^2(x^2+4x+4)\)

    10) \(f(x)=(2x+1)^3(9x^2−6x+1)\)

    11) \(f(x)=(3x+2)^5(x^2−10x+25)\)

    12) \(f(x)=x(4x^2−12x+9)(x^2+8x+16)\)

    13) \(f(x)=x^6−x^5−2x^4\)

    14) \(f(x)=3x^4+6x^3+3x^2\)

    15) \(f(x)=4x^5−12x^4+9x^3\)

    16) \(f(x)=2x^4(x^3−4x^2+4x)\)

    17) \(f(x)=4x^4(9x^4−12x^3+4x^2)\)

    Answers to odd exercises:

    7. \(0\) and \(4\) with multiplicity \(2\),  \(−\dfrac{3}{2}\) with multiplicity \(5\)

    9. \(0\) with multiplicity \(2\), \(-2\) with multiplicity \(2\)

    11. \(−\dfrac{2}{3}\) with multiplicity \(5\), \(5\) with multiplicity \(2\)

    13. \(0\) with multiplicity \(4\),  \(2\) and \(-1\) with multiplicity \(1\)

    15. \(\dfrac{3}{2}\) with multiplicity \(2\),  \(0\) with multiplicity \(3\)

    17. \(0\) with multiplicity \(6\), \(\dfrac{2}{3}\) with multiplicity \(2\)

    C: Multiplicity from a Graph

    Exercise \(\PageIndex{C}\)

    \( \bigstar \) Use the graph to identify zeros and multiplicity.

    19)

    CNX_PreCalc_Figure_03_04_212.jpg

    20)

    CNX_PreCalc_Figure_03_04_213.jpg

    21)

    CNX_PreCalc_Figure_03_04_214.jpg

    22)

    CNX_PreCalc_Figure_03_04_215.jpg

    Answers to odd exercises:

    19. \(–4, –2, 1, 3\) with multiplicity \(1\)

    21. \(–2, 3\) each with multiplicity \(2\)

    D: Graph polynomials

    Exercise \(\PageIndex{D}\) 

    \( \bigstar \) Graph the polynomial functions. State the \(x\)- and \(y\)- intercepts, multiplicity, and end behavior.

    24) \(f(x)=(x+3)^2(x−2)\)

    25) \(g(x)=(x+4)(x−1)^2\)

    26) \(h(x)=(x−1)^3(x+3)^2\)

    27) \(k(x)=(x−3)^3(x−2)^2 \)

    28) \(m(x)=−2x(x−1)(x+3)\)

    29) \(n(x)=−3x(x+2)(x−4)\)

    30. \(a(x) = x(x + 2)^{2}\)

    31. \(g(x) = x(x + 2)^{3}\)

    32. \(f(x) = -2(x-2)^2(x+1)\)

    33. \(g(x) = (2x+1)^2(x-3)\)

    34. \(f(x) = x^{3}(x + 2)^{2}\)

    35. \(P(x) = (x - 1)(x - 2)(x - 3)(x - 4)\)

    36. \(q(x) = (x + 5)^{2}(x - 3)^{4}\)

    37. \(h(x) = x^2(x-2)^2(x+2)^2\)

    38. \(h(t) = (3-t)(t^2+1)\)

    39. \(Z(b) = b(42 - b^{2})\)

    Answers to odd exercises:

    25. \(x\)-intercepts, \((1, 0)\) with multiplicity \(2\), \((–4, 0)\) with multiplicity \(1\), \(y\)- intercept \((0, 4)\) . As \(x→−∞\), \(f(x)→−∞\), as \(x→∞,\) \(f(x)→∞\).

    CNX_Precalc_Figure_03_04_202.jpg

    27. \(x\)-intercepts \((3,0)\) with multiplicity \(3\), \((2,0)\) with multiplicity \(2\), \(y\)- intercept \((0,–108).\) As \(x→−∞,\) \(f(x)→−∞\), as \(x→∞,\) \(f(x)→∞\).

    3.4 example 27.png

    29. \(x\)-intercepts \((0, 0),(–2, 0),(4, 0)\) with multiplicity \(1\), \(y\)-intercept (0, 0). As \(x→−∞,\) \(f(x)→∞\), as \(x→∞,\) \(f(x)→−∞\).

    CNX_Precalc_Figure_03_04_206.jpg

    31. \( (-2,0) \) multiplicity \(3\),
          \((0,0)\) multiplicity 1, 
          y-intercept \((0 ,0 )\),
          end behaviour: \( \nwarrow \dots \nearrow \)
          3.4 example 31.png
    33. \((-\frac{1}{2} ,0 )\) multiplicity \(2\),
          \((3 ,0 )\) multiplicity \(1\), 
          y-intercept \((0 ,-3 )\),
          end behaviour: \( \swarrow \dots \nearrow \)
         3.4 example 33.png
    35. \((1 ,0 )\),  \((2 ,0 )\), \((3 ,0 )\), \((4 ,0 )\)
          all multiplicity \(1\),
          y-intercept  \((0 , 24)\),
          end behaviour: \( \nwarrow \dots \nearrow \)
         3.4 example 35.png
    37. \((-2 ,0 )\), \((2 ,0 )\), \((0 ,0 )\) 
          all multiplicity \(2\), y-intercept \((0 ,0 )\),
          end behaviour: \( \nwarrow \dots \nearrow \)
        3.4 example 37.png
    39. \((\sqrt{42} ,0 )\), \((-\sqrt{42} ,0 )\), \((0 ,0 )\)
           all multiplicity \(1\), y-intercept \((0 ,0 )\),
           end behaviour: \( \nwarrow \dots \searrow \)
         3.4 example 39.png
     

    \( \bigstar \) Graph the polynomial functions. State the \(x\)- and \(y\)- intercepts, multiplicity, and end behavior.

    41. \(f\left(x\right)=\left(x+3\right)^{2} (x-2)\)

    42. \(g\left(x\right)=\left(x+4\right)\left(x-1\right)^{2}\)

    43. \(h\left(x\right)=\left(x-1\right)^{3} \left(x+3\right)^{2}\)

    44. \(k\left(x\right)=\left(x-3\right)^{3} \left(x-2\right)^{2}\) 

    45. \(m\left(x\right)=-2x\left(x-1\right)(x+3)\)

    46. \(n\left(x\right)=-3x\left(x+2\right)(x-4)\)

    47. \(f(x) = 9x - x^3\)

    48. \(f(x) =8 +  x^3  \)

    49. \(f(x) = x^4 - 25x^2\)

    50. \( f(x) =16 - x^4  \)

    51. \(f(x) = -x^4 + 2x^3 + 8x^2\)

    52. \(f(x) =x^3+7x^2 -9x \)

    53. \(f(x) = 2x^3 + 12x^2 - 8x - 48\)

    54. \(f(x) = 4x^4 + 10x^3 - 4x^2 -10x \)

    Answers to odd exercises:
    41. \((-3 ,0 )\) multiplicity \(2\),
          \((2 ,0 )\) multiplicity \(1\), 
          y-intercept\((0 ,-18 )\),   \( \swarrow \dots \nearrow \)
    Screen Shot 2019-10-03 at 6.05.35 PM.png
    43. \(( -3, 0)\) multiplicity \(2\),
          \((1 , 0) \) multiplicity \(3\),
          y-intercept\(( 0, -9)\),  \( \swarrow \dots \nearrow \) Screen Shot 2019-10-03 at 6.05.54 PM.png
    45. \((-3 , 0)\), \((0 , 0)\), \((1 , 0)\)
          all multiplicity \(1\), 
          y-intercept\((0 ,0 )\), \( \nwarrow \dots \searrow \)
    Screen Shot 2019-10-03 at 6.06.33 PM.png
    47. \((-3 , 0)\), \((0 , 0)\), \((3 , 0)\)
          all multiplicity \(1\), 
          y-intercept \((0 ,0 )\), \( \nwarrow \dots \searrow \)
    3.4 example 47.png
    49. \(( -5, 0) \), \(( 5, 0) \) both multiplicity \(1\),
          \((0 , 0)\) multiplicity \(2\), 
          y-intercept \((0 ,0 )\), \( \nwarrow \dots \nearrow \)
    3.4 example 49.png
    51. \(( -2, 0)\), \(( 4, 0)\) both multiplicity \(1\), 
          \((0 , 0)\) multiplicity \(2\), 
          y-intercept \((0 ,0 )\), \( \swarrow \dots \searrow \)
    3.4 example 51.png
    53. \((-6 , 0)\), \((-2 , 0)\), \((2 , 0)\)
          all multiplicity \(1\), 
          y-intercept \((0 , -48)\),  \( \swarrow \dots \nearrow \)
    3.4 example 53.png
       

    E: Polynomial Degree from a Graph

    Exercise \(\PageIndex{E}\)

    \( \bigstar \) Determine the least possible degree of the polynomial function shown.

    61)

    CNX_Precalc_Figure_03_03_201.jpg

    62)

    CNX_Precalc_Figure_03_03_202.jpg

    63)

    CNX_Precalc_Figure_03_03_203.jpg

    64)

    CNX_Precalc_Figure_03_03_204.jpg

    65)

    CNX_Precalc_Figure_03_03_205.jpg

    66)

    CNX_Precalc_Figure_03_03_206.jpg

    67)

    CNX_Precalc_Figure_03_03_207.jpg

    68)

    CNX_Precalc_Figure_03_03_208.jpg

    Answers to odd exercises:

    61. \(3\), \(\qquad\) 63. \(5\), \(\qquad\) 65. \(3\), \(\qquad\) 67. \(5\)

    F: Construct an Equation from a graph

    Exercise \(\PageIndex{F}\) 

    \( \bigstar \) Use the graphs to write the formula for the polynomial function of least degree.

    69)

    CNX_PreCalc_Figure_03_04_208.jpg

    70)

    CNX_Precalc_Figure_03_04_207.jpg

    71)

    CNX_PreCalc_Figure_03_04_210.jpg

    72)

    CNX_PreCalc_Figure_03_04_209.jpg

    73.

    屏幕快照 2019-06-23 上午3.25.44.png

    74)

    CNX_PreCalc_Figure_03_04_211.jpg
    Answers to odd exercises:

    69. \( f(x) = -(x+3)(x+1)(x-3)\)   or  \( f(x) = -\frac{2}{9}(x+3)(x+1)(x-3)\)
    71. \( f(x) = (x+2)^2(x-3)\)   or  \( f(x) = \frac{1}{4}(x+2)^2(x-3)\)
    73. \( f(x) = -(x+3)(x+2)(x-2)(x-4) \)   or  \( f(x) = -\frac{1}{24}(x+3)(x+2)(x-2)(x-4) \)

    \( \bigstar \) Use the graphs to write a formula for the polynomial function of least degree.

    75)

    CNX_PreCalc_Figure_03_04_217.jpg 

    76)

    CNX_PreCalc_Figure_03_04_216.jpg

    77)

    CNX_PreCalc_Figure_03_04_218.jpg 

    78)

    CNX_Precalc_Figure_03_03_216.jpg

    79)

    CNX_Precalc_Figure_03_03_222.jpg 

    80)

    CNX_Precalc_Figure_03_03_220.jpg

    81)

    CNX_Precalc_Figure_03_03_218.jpg 

    82)

    CNX_Precalc_Figure_03_03_224.jpg

    Answers to odd exercises:

    75. \(f(x)=(x−500)^2(x+200)\)    77. \(f(x)=(x+300)^2(x-100)^3\)   
    79. \(f(x)=(x+3)(x-3)(x^2+10)\)    81. \(f(x)=4x(x-5)(x-7)\)     

    \( \bigstar \) Use the graphs to write a formula for the polynomial function of least degree.

    83.

    屏幕快照 2019-06-23 上午3.26.29.png

    84(a).

    屏幕快照 2019-06-23 上午3.26.12.png

    84(b).

    屏幕快照 2019-06-23 上午3.26.46.png

    85.

    屏幕快照 2019-06-23 上午5.32.03.png

    86.

    屏幕快照 2019-06-23 上午5.32.31.png

     

    87.

    屏幕快照 2019-06-23 上午5.32.47.png

    88.

    屏幕快照 2019-06-23 上午5.33.17.png

    89.

    .屏幕快照 2019-06-23 上午5.33.39.png

    90.

    屏幕快照 2019-06-23 上午5.34.00.png

    Answers to odd exercises:

    83. \(y = \dfrac{1}{24} (x + 4) (x + 2) (x - 3)^2\)

    85. \(y = \dfrac{1}{12} (x + 2)^2 (x - 3)^2\)

    87. \(y = \dfrac{1}{6} (x + 3) (x + 2) (x - 1)^3\)

    89. \(y = -\dfrac{1}{16} (x + 3)(x + 1) (x - 2)^2 (x - 4)\)

    G: Construct an Equation from a Description

    Exercise \(\PageIndex{G}\) 

    \( \bigstar \) Use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is \(1\) or \(-1\). There may be more than one correct answer.

    91) The \(y\)-intercept is \((0,−4)\). The \(x\)-intercepts are \((−2,0), (2,0)\). Degree is \(2\). End behavior:   \( \nwarrow \dots \nearrow \)

    92) The \(y\)-intercept is \((0,9)\). The \(x\)-intercepts are \((−3,0), (3,0)\). Degree is \(2\). End behavior:   \( \swarrow \dots \searrow \)

    93) The \(y\)-intercept is \((0,0)\). The \(x\)-intercepts are \((0,0), (2,0)\). Degree is \(3\). End behavior:   \( \swarrow \dots \searrow \)

    94) The \(y\)-intercept is \((0,1)\). The x-intercept is \((1,0)\). Degree is \(3\). End behavior:   \( \nwarrow \dots \searrow \)

    95) The \(y\)-intercept is \((0,1)\). There is no \(x\)-intercept. Degree is \(4\). End behavior:   \( \nwarrow \dots \nearrow \)

    \( \bigstar \) Use the given information about the polynomial graph to write the equation.

    97) Degree \(3\). Zeros at \(x=–2\),\(x=1\), and \(x=3\). \(y\)-intercept at \((0,–4)\)

    98) Degree \(3\). Zeros at \(x=–5\), \(x=–2\), and \(x=1\). \(y\)-intercept at \((0,6)\)

    99) Degree \(5\). Roots of multiplicity \(2\) at \(x=3\) and \(x=1\). Root of multiplicity \(1\) at \(x=–3\).
    \(\quad\)\(y\)-intercept at \((0,9)\)

    100) Degree \(4\). Root of multiplicity \(2\) at \(x=4\). Roots of multiplicity \(1\) at \(x=1\) and \(x=–2\).
    \(\quad\)\(y\)-intercept at \((0,–3)\)

    101) Degree \(5\). Double zero at \(x=1\). Triple zero at \(x=3\). Passes through the point \((2,15)\)

    102) Degree \(3\). Zeros at \(x=4\), \(x=3\), and \(x=2\). \(y\)-intercept at \((0,−24)\)

    103) Degree \(3\). Zeros at \(x=−3\), \(x=−2\) and \(x=1\). \(y\)-intercept at \((0,12)\)

    104) Degree \(5\). Roots of multiplicity \(2\) at \(x=−3\) and \(x=2\). Root of multiplicity \(1\) at \(x=−2\). \(y\)-intercept at \((0, 4)\).

    105) Degree \(4\). Roots of multiplicity \(2\) at \(x=\dfrac{1}{2}\). Roots of multiplicity \(1\) at \(x=6 \) and \(x=−2\). \(y\)-intercept at \((0,18)\)

    106) Double zero at \(x=−3\). Triple zero at \(x=0\). Passes through the point \((1,32)\).

    107. Degree 3. Zeros at \(x\) = -2, \(x\) = 1, and \(x\) = 3. Vertical intercept at (0, -4)

    108. Degree 3. Zeros at \(x\) = -5, \(x\) = -2, and \(x\) = 1. Vertical intercept at (0, 6)

    109. Degree 5. Roots of multiplicity 2 at \(x\) = 3 and \(x\) = 1. Root of multiplicity 1 at \(x\) = -3. Vertical intercept at (0, 9)

    110. Degree 4. Root of multiplicity 2 at \(x\) = 4. Roots of multiplicity 1 at \(x\) = 1 and \(x\) = -2.
    \(\quad\)Vertical intercept at (0, -3)

    111. Degree 5. Double zero at \(x\) = 1. Triple zero at \(x\) = 3. Passes through the point (2, 15)

    112. Degree 5. Single zero at \(x\) = -2 and \(x\) = 3. Triple zero at \(x\) = 1. Passes through the point (2, 4)

    Answers to odd exercises:

    91. \(f(x)=x^2−4\)

    93. \(f(x)=x^3−4x^2+4x\)

    95. \(f(x)=x^4+1\)

    97. \(f(x)=−\dfrac{2}{3}(x+2)(x−1)(x−3)\)

    99. \(f(x)=\dfrac{1}{3}(x−3)^2(x−1)^2(x+3)\)

    101. \( f(x) =−15(x−1)^2(x−3)^3\)

    103. (f(x)=−2(x+3)(x+2)(x−1)\)

    105. \(f(x)=−\dfrac{3}{2}(2x−1)^2(x−6)(x+2)\)

    107. \(y = -\dfrac{2}{3} (x + 2) (x - 1) (x - 3)\)

    109. \(y = \dfrac{1}{3} (x - 1)^2 (x - 3)^2 (x + 3)\)

    111. \(y = -15(x - 1)^2 (x - 3)^3\)

    H: Turning Points

    Exercise \(\PageIndex{H}\)

    \( \bigstar \) Determine whether the graph of the function provided is a graph of a polynomial function. If so, determine the number of turning points and the least possible degree for the function.

    115)

    CNX_Precalc_Figure_03_03_209.jpg

    116)

    CNX_Precalc_Figure_03_03_210.jpg

    117)

    CNX_Precalc_Figure_03_03_211.jpg

    118)

    CNX_Precalc_Figure_03_03_212.jpg

    119)

    CNX_Precalc_Figure_03_03_213.jpg

    120)

    CNX_Precalc_Figure_03_03_214.jpg

    121)

    CNX_Precalc_Figure_03_03_215.jpg

     

    Answers to odd exercises:

    115. Yes. Number of turning points is \(2\). Least possible degree is \(3\).

    117. Yes. Number of turning points is \(1\). Least possible degree is \(2\).

    119. Yes. Number of turning points is \(0\). Least possible degree is \(1\).

    212. Yes. Number of turning points is \(0\). Least possible degree is \(1\).

    \( \star \)


    3.4e: Exercises - Polynomial Graphs is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?