# 2.4E: Infinite Limits EXERCISES

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

2.4: Infinite Limit Exercises

In the following exercises, find the limit.

In the following exercises, consider the graph of the function $$y=f(x)$$ shown here. Which of the statements about $$y=f(x)$$ are true and which are false? Explain why a statement is false.

J46) $$\displaystyle \lim_{x→10}f(x)=0$$

J47) $$\displaystyle \lim_{x→−2^+}f(x)=3$$

False; $$\displaystyle \lim_{x→−2^+}f(x)=+∞$$

J48) $$\displaystyle \lim_{x→−8}f(x)=f(−8)$$

J49) $$\displaystyle \lim_{x→6}f(x)=5$$

False; $$\displaystyle \lim_{x→6}f(x)$$ DNE since$$\displaystyle \lim_{x→6^−}f(x)=2$$ and $$\displaystyle \lim_{x→6^+}f(x)=5$$.

J2.4.1)

a. $$\displaystyle \lim_{x→−3^+}\frac{x}{x+3}$$

b. $$\displaystyle \lim_{x→−3^-}\frac{x}{x+3}$$

c. $$\displaystyle \lim_{x→−3}\frac{x}{x+3}$$

a. −∞
b. ∞
c. DNE

J2.4.2) $$\displaystyle \lim_{x→0}\ln |x|$$

J2.4.3)

a. $$\displaystyle \lim_{x→5^+}\frac{2}{x-5}$$

b. $$\displaystyle \lim_{x→5^-}\frac{2}{x-5}$$

c. $$\displaystyle \lim_{x→5}\frac{2}{x-5}$$

a. ∞
b. −∞
c. DNE

J2.4.4)

a. $$\displaystyle \lim_{x→-2^+}\frac{x}{(x+2)^2}$$

b. $$\displaystyle \lim_{x→-2^-}\frac{x}{(x+2)^2}$$

c. $$\displaystyle \lim_{x→-2}\frac{x}{(x+2)^2}$$

J2.4.5)

a. $$\displaystyle \lim_{x→6^+}\frac{x}{(6-x)^2}$$

b. $$\displaystyle \lim_{x→6^-}\frac{x}{(6-x)^2}$$

c. $$\displaystyle \lim_{x→6}\frac{x}{(6-x)^2}$$

a. ∞
b. ∞
c. ∞

J2.4.6)

a. $$\displaystyle \lim_{x→1^+}\frac{2x^2+7x−4}{x^2+x−2}$$

b. $$\displaystyle \lim_{x→1^−}\frac{2x^2+7x−4}{x^2+x−2}$$

c.$$\displaystyle \lim_{x→1}\frac{2x^2+7x−4}{x^2+x−2}$$

J2.4.7) $$\displaystyle \lim_{x→1}\frac{x^3−1}{x^2−1}$$

$$\displaystyle lim_{x→1}\frac{x^3−1}{x^2−1}=\displaystyle \lim_{x→1}\frac{(x-1)(x^2+x+1)}{(x-1)(x+1)}=\displaystyle \lim_{x→1}\frac{x^2+x+1}{x+1}=\frac{3}{2}$$

J2.4.8) $$\displaystyle \lim_{x→1/2}\frac{2x}{2x−1}$$

J2.4.9) $$\displaystyle \lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}$$

$$\displaystyle \lim_{x→ 1/2}\frac{2x^2+3x−2}{2x−1}=\displaystyle \lim_{x→1/2}\frac{(2x−1)(x+2)}{2x−1}=\displaystyle \lim_{x→1/2}(x+2)=\frac{5}{2}$$

State the vertical asymptote for each function, if any.

J2.4.10) $$f(x)=\ln x$$

J2.4.11) $$g(x)=\frac{x+5}{x-4}$$

$$x=4$$

J2.4.12) $$g(x)=\frac{7}{x+5}$$

J2.4.13) $$g(x)=\frac{7}{x}$$

$$x=0$$

J2.4.14)

a. $$\displaystyle \lim_{x→\frac{\pi}{2}^+}\tan x=$$

b. $$\displaystyle \lim_{x→\frac{\pi}{2}^-}\tan x=$$

c. $$\displaystyle \lim_{x→\frac{\pi}{2}}\tan x=$$

d. Does $$f(x)=\tan x$$ have a vertical asymptote at $$x=\frac{\pi}{2}$$?

2.4E: Infinite Limits EXERCISES is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.