3.7 E: Chain Rule Exercises
- Page ID
- 10737
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
3.7: The Chain Rule
Exercise:
For the following exercises, given \(y=f(u)\) and \(u=g(x)\), find dydx by using Leibniz’s notation for the chain rule: \(\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}.\)
214) \(y=3u−6,u=2x^2\)
215) \(y=6u^3,u=7x−4\)
Solution: \(18u^2⋅7=18(7x−4)^2⋅7\)
216) \(y=sinu,u=5x−1\)
217) \(y=cosu,u=\frac{−x}{8}\)
Solution: \(−sinu⋅\frac{−1}{8=}−sin(\frac{−x}{8})⋅\frac{−1}{8}\)
218) \(y=tanu,u=9x+2\)
219) \(y=\sqrt{4u+3},u=x^2−6x\)
Solution: \(\frac{8x−24}{2\sqrt{4u+3}}=\frac{4x−12}{\sqrt{4x^2−24x+3}}\)
For each of the following exercises,
a. decompose each function in the form \(y=f(u)\) and \(u=g(x),\) and
b. find \(\frac{dy}{dx}\) as a function of \(x\).
220) \(y=(3x−2)^6\)
221) \(y=(3x^2+1)^3\)
Solution: a. \(u=3x^2+1\); b. \(18x(3x^2+1)^2\)
222) \(y=sin^5(x)\)
For each of the following exercises, find \(\frac{dy}{dx}\) as a function of \(x\).
223) \(y=(\frac{x}{7}+\frac{7}{x})^7\)
Solution: \(a. f(u)=u^7,u=\frac{x}{7}+\frac{7}{x}; b. 7(\frac{x}{7}+\frac{7}{x})^6⋅(\frac{1}{7}−\frac{7}{x^2})\)
224) \(y=tan(secx)\)
225) \(y=csc(πx+1)\)
Solution: \(a. f(u)=cscu,u=πx+1; b. −πcsc(πx+1)⋅cot(πx+1)\)
226) \(y=cot^2x\)
227) \(y=−6sin^{−3}x\)
a. \(f(u)=−6u^{−3},u=sinx, b. 18sin^{−4}x⋅cosx\)
For the following exercises, find \(\frac{dy}{dx}\) for each function.
228) \(y=(3x^2+3x−1)^4\)
229) \(y=(5−2x)^{−2}\)
Solution: \(\frac{4}{(5−2x)^3}\)
230) \(y=cos^3(πx)\)
231) \(y=(2x^3−x^2+6x+1)^3\)
Solution: \(6(2x^3−x^2+6x+1)^2(3x^2−x+3)\)
232) \(y=\frac{1}{sin^2(x)}\)
233) \(y=(tanx+sinx)^{−3}\)
Soution: \(−3(tanx+sinx)^{−4}⋅(sec^2x+cosx)\)
234) \(y=x^2cos^4x\)
235) \(y=sin(cos7x)\)
Solution: \(−7cos(cos7x)⋅sin7x\)
236) \(y=\sqrt{6+secπx^2}\)
237) \(y=cot^3(4x+1)\)
Solution: \(−12cot^2(4x+1)⋅csc^2(4x+1)\)
238) Let \(y=[f(x)]^3\) and suppose that \(f′(1)=4\) and \(\frac{dy}{dx}=10\) for \(x=1\). Find \(f(1)\).
239) Let \(y=(f(x)+5x^2)^4\) and suppose that \(f(−1)=−4\) and \(\frac{dy}{dx}=3\) when \(x=−1\). Find \(f′(−1)\)
Solution: \(10\frac{3}{4}\)
240) Let \(y=(f(u)+3x)^2\) and \(u=x^3−2x\). If \(f(4)=6\) and \(\frac{dy}{dx}=18\) when \(x=2\), find \(f′(4)\).
241) [T] Find the equation of the tangent line to \(y=−sin(\frac{x}{2})\) at the origin. Use a calculator to graph the function and the tangent line together.
Solution: \(y=\frac{−1}{2}x\)
242) [T] Find the equation of the tangent line to \(y=(3x+\frac{1}{x})^2\) at the point \((1,16)\). Use a calculator to graph the function and the tangent line together.
243) Find the \(x\) -coordinates at which the tangent line to \(y=(x−\frac{6}{x})^8\) is horizontal.
Solution: \(x=±\sqrt{6}\)
244) [T] Find an equation of the line that is normal to \(g(θ)=sin2^(πθ)\) at the point \((\frac{1}{4},\frac{1}{2})\). Use a calculator to graph the function and the normal line together.
For the following exercises, use the information in the following table to find \(h′(a)\) at the given value for \(a\).
| \(x\) | \(f(x)\) | \(f'(x)\) | \(g(x)\) | \(g'(x)\) |
| 0 | 2 | 5 | 0 | 2 |
| 1 | 1 | −2 | 3 | 0 |
| 2 | 4 | 4 | 1 | −1 |
| 3 | 3 | −3 | 2 | 3 |
245) \(h(x)=f(g(x));a=0\)
Solution: \(10\)
246) \(h(x)=g(f(x));a=0\)
247) \(h(x)=(x^4+g(x))^{−2};a=1\)
Solution: \(−\frac{1}{8}\)
248) \(h(x)=(\frac{f(x)}{g(x)})^2;a=3\)
249) \(h(x)=f(x+f(x));a=1\)
Solution: \(−4\)
250) \(h(x)=(1+g(x))^3;a=2\)
251) \(h(x)=g(2+f(x^2));a=1\)
Solution: \(−12\)
252) h(x)=f(g(sinx));a=0
253) [T] The position function of a freight train is given by
\(s(t)=100(t+1)^{−2}\), with \(s\) in meters and \(t\) in seconds. At time \(t=6\)s, find the train’s
a. velocity and
b. acceleration.
c. Using a. and b. is the train speeding up or slowing down?
Solution: \(a. −\frac{200}{343}\) m/s, b. \(\frac{600}{2401}\) m/s^2, c. The train is slowing down since velocity and acceleration have opposite signs.
254) [T] A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measured in seconds and \(s\) is in inches:
\(s(t)=−3cos(πt+\frac{π}{4}).\)
a. Determine the position of the spring at \(t=1.5\) s.
b. Find the velocity of the spring at \(t=1.5\) s.
255) [T] The total cost to produce \(x\) boxes of Thin Mint Girl Scout cookies is \(C\) dollars, where \(C=0.0001x^3−0.02x^2+3x+300.\) In \(t\) weeks production is estimated to be \(x=1600+100t\) boxes.
a. Find the marginal cost \(C′(x).\)
b. Use Leibniz’s notation for the chain rule, \(\frac{dC}{dt}=\frac{dC}{dx}⋅\frac{dx}{dt}\), to find the rate with respect to time \(t\) that the cost is changing.
c. Use b. to determine how fast costs are increasing when \(t=2\) weeks. Include units with the answer.
Solution: \(a. C′(x)=0.0003x^2−0.04x+3\)
\(b. dCdt=100⋅(0.0003x^2−0.04x+3)\) c. Approximately $90,300 per week
256) [T] The formula for the area of a circle is \(A=πr^2\), where \(r\) is the radius of the circle. Suppose a circle is expanding, meaning that both the area \(A\) and the radius \(r\) (in inches) are expanding.
a. Suppose \(r=2−\frac{100}{(t+7)^2}\) where \(t\) is time in seconds. Use the chain rule \(\frac{dA}{dt}=\frac{dA}{dr}⋅\frac{dr}{dt}\) to find the rate at which the area is expanding.
b. Use a. to find the rate at which the area is expanding at \(t=4\) s.
257) [T] The formula for the volume of a sphere is \(S=\frac{4}{3}πr^3\), where \(r\) (in feet) is the radius of the sphere. Suppose a spherical snowball is melting in the sun.
a. Suppose \(r=\frac{1}{(t+1)^2}−\frac{1}{12}\) where t is time in minutes. Use the chain rule \(\frac{dS}{dt}=\frac{dS}{dr}⋅\frac{dr}{dt}\) to find the rate at which the snowball is melting.
b. Use a. to find the rate at which the volume is changing at \(t=1\) min.
Solution: \(a. \frac{dS}{dt}=−\frac{8πr^2}{(t+1)^3}\) b. The volume is decreasing at a rate of \(−\frac{π}{36}\) \(ft^3\)/min
258) [T] The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function \(T(x)=94−10cos[\frac{π}{12}(x−2)]\), where \(x\) is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.
259) [T] The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function \(D(t)=5sin(\frac{π}{6}t−\frac{7π}{6})+8\), where \(t\) is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.
Solution: \(~2.3\) ft/hr
More Exercises
For the following exercises, find \(f′(x)\) for each function.
331) \(f(x)=x^2e^x\)
Solution: \(2xe^x+x^2e^x\)
332) \(f(x)=\frac{e^{−x}}{x}\)
333) \(f(x)=e^{x^3lnx}\)
Solution: \(e^{x^3}lnx(3x^2lnx+x^2)\)
334) \(f(x)=\sqrt{e^{2x}+2x}\)
335) \(f(x)=\frac{e^x−e^{−x}}{e^x+e^{−x}}\)
Solution: \(\frac{4}{(e^x+e^{−x})^2}\)
336) \(f(x)=\frac{10^x}{ln10}\)
337) \(f(x)=2^{4x}+4x^2\)
Solution: \(2^{4x+2}⋅ln2+8x\)

