Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.9 E: Derivatives Ln, etc. Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

3.9: Derivatives of Ln, General Exponent & Log Functions; and Logarithmic Differentiation

Exercise:

For the following exercises, find f(x) for each function.

333) f(x)=ex3lnx

Answer:

ex3lnx(3x2lnx+x2)

336) f(x)=10xln10

337) f(x)=24x+4x2

Answer:

24x+2ln2+8x

338) f(x)=3sin(3x)

339) f(x)=x^π⋅π^x

Answer:

πx^{π−1}⋅π^x+x^π⋅π^x\ln π

340) f(x)=\ln(4x^3+x)

341) f(x)=\ln\sqrt{5x−7}

Answer:

\frac{5}{2(5x−7)}

342) f(x)=x^2\ln(9x)

343) f(x)=log(\sec x)

Answer:

\frac{\tan x}{\ln10}

344) f(x)=log_7(6x^4+3)^5

345) f(x)=2^x⋅log_37^{x^2−4}

Answer:

2^x⋅\ln 2⋅log_37^{x^2−4}+2^x⋅\frac{2x\ln 7}{\ln 3}

For the following exercises, use logarithmic differentiation to find \frac{dy}{dx}.

346) y=x^{\sqrt{x}}

347) y=(\sin(2x))^{4x}

Answer:

(\sin(2x))^{4x}[4⋅ln(\sin(2x))+8x⋅\cot(2x)]

348) y=(\ln x)^{\ln x}

349) y=x^{log_2x}

Answer:

x^{log_2x}⋅\frac{2\ln x}{x\ln 2}

350) y=(x^2−1)^{\ln x}

351) y=x^{\cot x}

Answer:

x^{\cot x}⋅[−\csc^2x⋅lnx+\frac{\cot x}{x}]

352) y=\frac{x+11}{\sqrt[3]{x^2−4}}

353) y=x^{−1/2}(x^2+3)^{2/3}(3x−4)^4

Answer:

x^{−1/2}(x^2+3)^{2/3}(3x−4)^4⋅[\frac{−1}{2x}+\frac{4x}{3(x^2+3)}+\frac{12}{3x−4}]

354) [T] Find an equation of the tangent line to the graph of f(x)=4xe^{(x^2−1)} at the point where

x=−1. Graph both the function and the tangent line.

355) [T] Find the equation of the line that is normal to the graph of f(x)=x⋅5^x at the point where x=1. Graph both the function and the normal line.

Answer:

y=\frac{−1}{5+5\ln 5}x+(5+\frac{1}{5+5\ln 5})

CNX_Calc_Figure_03_09_202.jpeg

356) [T] Find the equation of the tangent line to the graph of x^3−x\ln y+y^3=2x+5 at the point where x=2. (Hint: Use implicit differentiation to find \frac{dy}{dx}.) Graph both the curve and the tangent line.

J357)

use the graph of y=f(x) (shown below) to

a. sketch the graph of y=f^{−1}(x), and

b. use part a. to estimate (f^{−1})′(1).

CNX_Calc_Figure_03_07_203.jpeg

Answer:

a.

CNX_Calc_Figure_03_07_204.jpeg

b. (f^{−1})′(1)~2

For the next set of exercises, find \frac{dy}{dx}. [Hint: first take the ln of both sides.]

J358) y=\frac{(2x^3−15x)\sqrt{6x^{4}+7}}{3x^2−x+3}

J359) y={30x^4}\sqrt{17x+2}{(\sin(x))}

J360) y={e^{5x}}{(3x-1)^\frac{2}{3}}{(8^{3x})}


3.9 E: Derivatives Ln, etc. Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?