3.9 E: Derivatives Ln, etc. Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
3.9: Derivatives of Ln, General Exponent & Log Functions; and Logarithmic Differentiation
Exercise:
For the following exercises, find f′(x) for each function.
333) f(x)=ex3lnx
- Answer:
-
ex3lnx(3x2lnx+x2)
336) f(x)=10xln10
337) f(x)=24x+4x2
- Answer:
-
24x+2⋅ln2+8x
338) f(x)=3sin(3x)
339) f(x)=x^π⋅π^x
- Answer:
-
πx^{π−1}⋅π^x+x^π⋅π^x\ln π
340) f(x)=\ln(4x^3+x)
341) f(x)=\ln\sqrt{5x−7}
- Answer:
-
\frac{5}{2(5x−7)}
342) f(x)=x^2\ln(9x)
343) f(x)=log(\sec x)
- Answer:
-
\frac{\tan x}{\ln10}
344) f(x)=log_7(6x^4+3)^5
345) f(x)=2^x⋅log_37^{x^2−4}
- Answer:
-
2^x⋅\ln 2⋅log_37^{x^2−4}+2^x⋅\frac{2x\ln 7}{\ln 3}
For the following exercises, use logarithmic differentiation to find \frac{dy}{dx}.
346) y=x^{\sqrt{x}}
347) y=(\sin(2x))^{4x}
- Answer:
-
(\sin(2x))^{4x}[4⋅ln(\sin(2x))+8x⋅\cot(2x)]
348) y=(\ln x)^{\ln x}
349) y=x^{log_2x}
- Answer:
-
x^{log_2x}⋅\frac{2\ln x}{x\ln 2}
350) y=(x^2−1)^{\ln x}
351) y=x^{\cot x}
- Answer:
-
x^{\cot x}⋅[−\csc^2x⋅lnx+\frac{\cot x}{x}]
352) y=\frac{x+11}{\sqrt[3]{x^2−4}}
353) y=x^{−1/2}(x^2+3)^{2/3}(3x−4)^4
- Answer:
-
x^{−1/2}(x^2+3)^{2/3}(3x−4)^4⋅[\frac{−1}{2x}+\frac{4x}{3(x^2+3)}+\frac{12}{3x−4}]
354) [T] Find an equation of the tangent line to the graph of f(x)=4xe^{(x^2−1)} at the point where
x=−1. Graph both the function and the tangent line.
355) [T] Find the equation of the line that is normal to the graph of f(x)=x⋅5^x at the point where x=1. Graph both the function and the normal line.
- Answer:
-
y=\frac{−1}{5+5\ln 5}x+(5+\frac{1}{5+5\ln 5})
356) [T] Find the equation of the tangent line to the graph of x^3−x\ln y+y^3=2x+5 at the point where x=2. (Hint: Use implicit differentiation to find \frac{dy}{dx}.) Graph both the curve and the tangent line.
J357)
use the graph of y=f(x) (shown below) to
a. sketch the graph of y=f^{−1}(x), and
b. use part a. to estimate (f^{−1})′(1).
- Answer:
-
a.
b. (f^{−1})′(1)~2
For the next set of exercises, find \frac{dy}{dx}. [Hint: first take the ln of both sides.]
J358) y=\frac{(2x^3−15x)\sqrt{6x^{4}+7}}{3x^2−x+3}
J359) y={30x^4}\sqrt{17x+2}{(\sin(x))}
J360) y={e^{5x}}{(3x-1)^\frac{2}{3}}{(8^{3x})}