# 2.2E: Exercises for Section 2.2

• • OpenStax
• OpenStax
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Intuitive Definition of Limits

For exercises 1 - 2, consider the function $$f(x)=\dfrac{x^2−1}{|x−1|}$$.

1) [T] Complete the following table for the function. Round your solutions to four decimal places.

$$x$$ $$f(x)$$ $$x$$ $$f(x)$$
0.9 a. 1.1 e.
0.99 b. 1.01 f.
0.999 c. 1.001 g.
0.9999 d. 1.0001 h.

2) What do your results in the preceding exercise indicate about the two-sided limit $$\displaystyle \lim_{x→1}f(x)$$? Explain your response.

$$\displaystyle \lim_{x \to 1}f(x)$$ does not exist because $$\displaystyle \lim_{x \to 1^−}f(x)=−2≠\lim_{x \to 1^+}f(x)=2$$.

For exercises 3 - 5, consider the function $$f(x)=(1+x)^{1/x}$$.

3) [T] Make a table showing the values of $$f$$ for $$x=−0.01,\;−0.001,\;−0.0001,\;−0.00001$$ and for $$x=0.01,\;0.001,\;0.0001,\;0.00001$$. Round your solutions to five decimal places.

$$x$$ $$f(x)$$ $$x$$ $$f(x)$$
-0.01 a. 0.01 e.
-0.001 b. 0.001 f.
-0.0001 c. 0.0001 g.
-0.00001 d. 0.00001 h.

4) What does the table of values in the preceding exercise indicate about the function $$f(x)=(1+x)^{1/x}$$?

$$\displaystyle \lim_{x \to 0}(1+x)^{1/x}\approx 2.7183$$.

5) To which mathematical constant do the values in the preceding exercise appear to be approaching?  This is the actual limit here.

In exercises 6 - 8, use the given values to set up a table to evaluate the limits. Round your solutions to eight decimal places.

6) [T] $$\displaystyle \lim_{x \to 0}\frac{\sin 2x}{x};\quad ±0.1,\; ±0.01, \; ±0.001, \;±.0001$$

$$x$$ $$\frac{\sin 2x}{x}$$ $$x$$ $$\frac{\sin 2x}{x}$$
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.
a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h. 1.99999999;
$$\displaystyle \lim_{x \to 0}\frac{\sin 2x}{x}=2$$

7) [T] $$\displaystyle \lim_{x \to 0}\frac{\sin 3x}{x} ±0.1, \; ±0.01, \; ±0.001, \; ±0.0001$$

$$x$$ $$\frac{\sin 3x}{x}$$ $$x$$ $$\frac{\sin 3x}{x}$$
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.

8) Use the preceding two exercises to conjecture (guess) the value of the following limit: $$\displaystyle \lim_{x \to 0}\frac{\sin ax}{x}$$ for $$a$$, a positive real value.

$$\displaystyle \lim_{x \to 0}\frac{\sin ax}{x}=a$$

[T] In exercises 9 - 12, set up a table of values to find the indicated limit. Round to eight digits.

9) $$\displaystyle \lim_{x \to 2}\frac{x^2−4}{x^2+x−6}$$

$$x$$ $$\frac{x^2−4}{x^2+x−6}$$ $$x$$ $$\frac{x^2−4}{x^2+x−6}$$
1.9 a. 2.1 e.
1.99 b. 2.01 f.
1.999 c. 2.001 g.
1.9999 d. 2.0001 h.

10) $$\displaystyle \lim_{x \to 1}(1−2x)$$

$$x$$ $$1−2x$$ $$x$$ $$1−2x$$
0.9 a. 1.1 e.
0.99 b. 1.01 f.
0.999 c. 1.001 g.
0.9999 d. 1.0001 h.
a. −0.80000000; b. −0.98000000; c. −0.99800000; d. −0.99980000; e. −1.2000000; f. −1.0200000; g. −1.0020000; h. −1.0002000;
$$\displaystyle \lim_{x \to 1}(1−2x)=−1$$

11) $$\displaystyle \lim_{x \to 0}\frac{5}{1−e^{1/x}}$$

$$x$$ $$\frac{5}{1−e^{1/x}}$$ $$x$$ $$\frac{5}{1−e^{1/x}}$$
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.

12) $$\displaystyle \lim_{x \to 2}\frac{1−\frac{2}{x}}{x^2−4}$$

$$x$$ $$\frac{1−\frac{2}{x}}{x^2−4}$$ $$x$$ $$\frac{1−\frac{2}{x}}{x^2−4}$$
1.9 a. 2.1 e.
1.99 b. 2.01 f.
1.999 c. 2.001 g.
1.9999 d. 2.0001 h.
a. 0.13495277; b. 0.12594300; c. 0.12509381; d. 0.12500938; e. 0.11614402; f. 0.12406794; g. 0.12490631; h. 0.12499063;
$$\displaystyle ∴\lim_{x \to 2}\frac{1−\frac{2}{x}}{x^2−4}=0.1250=\frac{1}{8}$$

In exercises 13 - 17, use the following graph of the function $$y=f(x)$$ to find the values, if possible. Estimate when necessary. 13) $$\displaystyle \lim_{x→1^−}f(x)$$

14) $$\displaystyle \lim_{x→1^+}f(x)$$

$$2$$

15) $$\displaystyle \lim_{x→1}f(x)$$

16) $$\displaystyle \lim_{x→2}f(x)$$

$$1$$

17) $$f(1)$$

In exercises 18 - 21, use the graph of the function $$y=f(x)$$ shown here to find the values, if possible. Estimate when necessary. 18) $$\displaystyle \lim_{x→0^−}f(x)$$

$$1$$

19) $$\displaystyle \lim_{x→0^+}f(x)$$

20) $$\displaystyle \lim_{x→0}f(x)$$

DNE

21) $$\displaystyle \lim_{x→2}f(x)$$

In exercises 22 - 27, use the graph of the function $$y=f(x)$$ shown here to find the values, if possible. Estimate when necessary. 22) $$\displaystyle \lim_{x→−2^−}f(x)$$

$$0$$

23) $$\displaystyle \lim_{x→−2^+}f(x)$$

24) $$\displaystyle \lim_{x→−2}f(x)$$

DNE

25) $$\displaystyle \lim_{x→2^−}f(x)$$

26) $$\displaystyle \lim_{x→2^+}f(x)$$

$$2$$

27) $$\displaystyle \lim_{x→2}f(x)$$

In exercises 28 - 30, use the graph of the function $$y=g(x)$$ shown here to find the values, if possible. Estimate when necessary. 28) $$\displaystyle \lim_{x→0^−}g(x)$$

$$3$$

29) $$\displaystyle \lim_{x→0^+}g(x)$$

30) $$\displaystyle \lim_{x→0}g(x)$$

DNE

In exercises 31 - 33, use the graph of the function $$y=h(x)$$ shown here to find the values, if possible. Estimate when necessary. 31) $$\displaystyle \lim_{x→0^−}h(x)$$

32) $$\displaystyle \lim_{x→0^+}h(x)$$

$$0$$

33) $$\displaystyle \lim_{x→0}h(x)$$

In exercises 34 - 38, use the graph of the function $$y=f(x)$$ shown here to find the values, if possible. Estimate when necessary. 34) $$\displaystyle \lim_{x→0^−}f(x)$$

$$-2$$

35) $$\displaystyle \lim_{x→0^+}f(x)$$

36) $$\displaystyle \lim_{x→0}f(x)$$

DNE

37) $$\displaystyle \lim_{x→1}f(x)$$

38) $$\displaystyle \lim_{x→2}f(x)$$

$$0$$

39) A track coach uses a camera with a fast shutter to estimate the position of a runner with respect to time. A table of the values of position of the athlete versus time is given here, where $$x$$ is the position in meters of the runner and $$t$$ is time in seconds. What is $$\displaystyle \lim_{t→2}\;x(t)$$? What does it mean physically?

$$t(sec)$$ $$x(m)$$
1.75 4.5
1.95 6.1
1.99 6.42
2.01 6.58
2.05 6.9
2.25 8.5

40) Shock waves arise in many physical applications, ranging from supernovas to detonation waves. A graph of the density of a shock wave with respect to distance, $$x$$, is shown here. We are mainly interested in the location of the front of the shock, labeled $$X_{SF}$$ in the diagram. a. Evaluate $$\displaystyle \lim_{x→X_{SF}^+}ρ(x)$$.

b. Evaluate $$\displaystyle \lim_{x→X_{SF}^−}ρ(x)$$.

c. Evaluate $$\displaystyle \lim_{x→X_{SF}}ρ(x)$$. Explain the physical meanings behind your answers.

a. $$ρ_2$$ b. $$ρ_1$$ c. DNE unless $$ρ_1=ρ_2$$. As you approach $$X_{SF}$$ from the right, you are in the high-density area of the shock. When you approach from the left, you have not experienced the “shock” yet and are at a lower density.