# 2.5E: Exercises for Section 2.5

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

For exercises 1 - 5, examine the graphs. Identify where the vertical asymptotes are located.

1)

$$x=1$$

2)

3)

$$x=−1,\;x=2$$

4)

5)

$$x=0$$

For the functions $$f(x)$$ in exercises 6 - 10, determine whether there is an asymptote at $$x=a$$. Justify your answer without graphing on a calculator.

6) $$f(x)=\dfrac{x+1}{x^2+5x+4},\quad a=−1$$

7) $$f(x)=\dfrac{x}{x−2},\quad a=2$$

Yes, there is a vertical asymptote at $$x = 2$$.

8) $$f(x)=(x+2)^{3/2},\quad a=−2$$

9) $$f(x)=(x−1)^{−1/3},\quad a=1$$

Yes, there is vertical asymptote at $$x = 1$$.

10) $$f(x)=1+x^{−2/5},\quad a=1$$

In exercises 11 - 20, evaluate the limit.

11) $$\displaystyle \lim_{x→∞}\frac{1}{3x+6}$$

$$\displaystyle \lim_{x→∞}\frac{1}{3x+6} = 0$$

12) $$\displaystyle \lim_{x→∞}\frac{2x−5}{4x}$$

13) $$\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2}$$

$$\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2} = ∞$$

14) $$\displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8}$$

15) $$\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4}$$

$$\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4} = −\frac{1}{7}$$

16) $$\displaystyle \lim_{x→∞}\frac{3x}{\sqrt{x^2+1}}$$

17) $$\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2}$$

$$\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2} = -2$$

18) $$\displaystyle \lim_{x→∞}\frac{4x}{\sqrt{x^2−1}}$$

19) $$\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}}$$

$$\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}} = -4$$

20) $$\displaystyle \lim_{x→∞}\frac{2\sqrt{x}}{x−\sqrt{x}+1}$$

For exercises 21 - 25, find the horizontal and vertical asymptotes.

21) $$f(x)=x−\dfrac{9}{x}$$

Horizontal: none,
Vertical: $$x=0$$

22) $$f(x)=\dfrac{1}{1−x^2}$$

23) $$f(x)=\dfrac{x^3}{4−x^2}$$

Horizontal: none,
Vertical: $$x=±2$$

24) $$f(x)=\dfrac{x^2+3}{x^2+1}$$

25) $$f(x)=\sin(x)\sin(2x)$$

Horizontal: none,
Vertical: none

26) $$f(x)=\cos x+\cos(3x)+\cos(5x)$$

27) $$f(x)=\dfrac{x\sin(x)}{x^2−1}$$

Horizontal: $$y=0,$$
Vertical: $$x=±1$$

28) $$f(x)=\dfrac{x}{\sin(x)}$$

29) $$f(x)=\dfrac{1}{x^3+x^2}$$

Horizontal: $$y=0,$$
Vertical: $$x=0$$ and $$x=−1$$

30) $$f(x)=\dfrac{1}{x−1}−2x$$

31) $$f(x)=\dfrac{x^3+1}{x^3−1}$$

Horizontal: $$y=1,$$
Vertical: $$x=1$$

32) $$f(x)=\dfrac{\sin x+\cos x}{\sin x−\cos x}$$

33) $$f(x)=x−\sin x$$

Horizontal: none,
Vertical: none

34) $$f(x)=\dfrac{1}{x}−\sqrt{x}$$

For exercises 35 - 38, construct a function $$f(x)$$ that has the given asymptotes.

35) $$x=1$$ and $$y=2$$

Answers will vary, for example: $$y=\dfrac{2x}{x−1}$$

36) $$x=1$$ and $$y=0$$

37) $$y=4, \;x=−1$$

Answers will vary, for example: $$y=\dfrac{4x}{x+1}$$

38) $$x=0$$

In exercises 39 - 43, graph the function on a graphing calculator on the window $$x=[−5,5]$$ and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

39) [T] $$f(x)=\dfrac{1}{x+10}$$

$$\displaystyle \lim_{x→∞}\frac{1}{x+10}=0$$  so $$f$$ has a horizontal asymptote of $$y=0$$.

40) [T] $$f(x)=\dfrac{x+1}{x^2+7x+6}$$

41) [T] $$\displaystyle \lim_{x→−∞}x^2+10x+25$$

$$\displaystyle \lim_{x→−∞}x^2+10x+25 = ∞$$

42) [T] $$\displaystyle \lim_{x→−∞}\frac{x+2}{x^2+7x+6}$$

43) [T] $$\displaystyle \lim_{x→∞}\frac{3x+2}{x+5}$$

$$\displaystyle \lim_{x→∞}\frac{3x+2}{x+5}=3$$  so this function has a horizontal asymptote of $$y=3$$.