Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Chapter 10 Review Exercises

  • Page ID
    10803
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    True or False? In the following exercises, justify your answer with a proof or a counterexample.

    1) If the radius of convergence for a power series \(\displaystyle \sum_{n=0}^∞a_nx^n\) is \(\displaystyle 5\), then the radius of convergence for the series \(\displaystyle \sum_{n=1}^∞na_nx^{n−1}\) is also \(\displaystyle 5\).

    Solution: True

    2) Power series can be used to show that the derivative of \(\displaystyle e^x\) is \(\displaystyle e^x\). (Hint: Recall that \(\displaystyle e^x=\sum_{n=0}^∞\frac{1}{n!}x^n.\))

    3) For small values of \(\displaystyle x,sinx≈x.\)

    Solution: True

    4) The radius of convergence for the Maclaurin series of \(\displaystyle f(x)=3^x\) is \(\displaystyle 3\).

    In the following exercises, find the radius of convergence and the interval of convergence for the given series.

    5) \(\displaystyle \sum_{n=0}^∞n^2(x−1)^n\)

    Solution: ROC: \(\displaystyle 1\); IOC: \(\displaystyle (0,2)\)

    6) \(\displaystyle \sum_{n=0}^∞\frac{x^n}{n^n}\)

    7) \(\displaystyle \sum_{n=0}^∞\frac{3nx^n}{12^n}\)

    Solution: ROC: \(\displaystyle 12;\) IOC: \(\displaystyle (−16,8)\)

    8) \(\displaystyle \sum_{n=0}^∞\frac{2^n}{e^n}(x−e)^n\)

    In the following exercises, find the power series representation for the given function. Determine the radius of convergence and the interval of convergence for that series.

    9) \(\displaystyle f(x)=\frac{x^2}{x+3}\)

    Solution: \(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{3^{n+1}}x^n;\) ROC: \(\displaystyle 3\); IOC: \(\displaystyle (−3,3)\)

    10) \(\displaystyle f(x)=\frac{8x+2}{2x^2−3x+1}\)

    In the following exercises, find the power series for the given function using term-by-term differentiation or integration.

    11) \(\displaystyle f(x)=tan^{−1}(2x)\)

    Solution: integration: \(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{2n+1}(2x)^{2n+1}\)

    12) \(\displaystyle f(x)=\frac{x}{(2+x^2)^2}\)

    In the following exercises, evaluate the Taylor series expansion of degree four for the given function at the specified point. What is the error in the approximation?

    13) \(\displaystyle f(x)=x^3−2x^2+4,a=−3\)

    Solution: \(\displaystyle p_4(x)=(x+3)^3−11(x+3)^2+39(x+3)−41;\) exact

    14) \(\displaystyle f(x)=e^{1/(4x)},a=4\)

    In the following exercises, find the Maclaurin series for the given function.

    15) \(\displaystyle f(x)=cos(3x)\)

    Solution: \(\displaystyle \sum_{n=0}^∞\frac{(−1)^n(3x)^{2n}}{2n!}\)

    16) \(\displaystyle f(x)=ln(x+1)\)

    In the following exercises, find the Taylor series at the given value.

    17) \(\displaystyle f(x)=sinx,a=\frac{π}{2}\)

    Solution: \(\displaystyle \sum_{n=0}^∞\frac{(−1)^n}{(2n)!}(x−\frac{π}{2})^{2n}\)

    18) \(\displaystyle f(x)=\frac{3}{x},a=1\)

    In the following exercises, find the Maclaurin series for the given function.

    19) \(\displaystyle f(x)=e^{−x^2}−1\)

    Solution: \(\displaystyle \sum_{n=1}^∞\frac{(−1)^n}{n!}x^{2n}\)

    20) \(\displaystyle f(x)=cosx−xsinx\)

    In the following exercises, find the Maclaurin series for \(\displaystyle F(x)=∫^x_0f(t)dt\) by integrating the Maclaurin series of \(\displaystyle f(x)\) term by term.

    21) \(\displaystyle f(x)=\frac{sinx}{x}\)

    Solution: \(\displaystyle F(x)=\sum_{n=0}^∞\frac{(−1)^n}{(2n+1)(2n+1)!}x^{2n+1}\)

    22) \(\displaystyle f(x)=1−e^x\)

    23) Use power series to prove Euler’s formula: \(\displaystyle e^{ix}=cosx+isinx\)

    Solution: Answers may vary.

    The following exercises consider problems of annuity payments.

    24) For annuities with a present value of \(\displaystyle $1\) million, calculate the annual payouts given over \(\displaystyle 25\) years assuming interest rates of \(\displaystyle 1%,5%\), and \(\displaystyle 10%.\)

    25) A lottery winner has an annuity that has a present value of \(\displaystyle $10\) million. What interest rate would they need to live on perpetual annual payments of \(\displaystyle $250,000\)?

    Solution: \(\displaystyle 2.5%\)

    26) Calculate the necessary present value of an annuity in order to support annual payouts of \(\displaystyle $15,000\) given over \(\displaystyle 25\) years assuming interest rates of \(\displaystyle 1%,5%\),and \(\displaystyle 10%.\)