Skip to main content
Mathematics LibreTexts

15.5E: Divergence and Curl (Exercises)

  • Page ID
    28710
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For the following exercises, determine whether the statement is True or False.

    1. If the coordinate functions of \(\vecs F : \mathbb{R}^3 \rightarrow \mathbb{R}^3\) have continuous second partial derivatives, then \(\text{curl} \, (\text{div} \,\vecs F)\) equals zero.

    2. \(\vecs\nabla \cdot (x \,\mathbf{\hat i} + y \,\mathbf{\hat j} + z \,\mathbf{\hat k} ) = 1\).

    Answer
    False

    3. All vector fields of the form \(\vecs F(x,y,z) = f(x)\,\mathbf{\hat i} + g(y)\,\mathbf{\hat j} + h(z)\,\mathbf{\hat k}\) are conservative.

    4. If \(\text{curl} \, \vecs F = \vecs 0\), then \(\vecs F\) is conservative.

    Answer
    True

    5. If \(\vecs F\) is a constant vector field then \(\text{div} \,\vecs F = 0\).

    6. If \(\vecs F\) is a constant vector field then \(\text{curl} \,\vecs F =\vecs 0\).

    Answer
    True

    For the following exercises, find the curl of \(\vecs F\).

    7. \(\vecs F(x,y,z) = xy^2z^4\,\mathbf{\hat i} + (2x^2y + z)\,\mathbf{\hat j} + y^3 z^2\,\mathbf{\hat k}\)

    8. \(\vecs F(x,y,z) = x^2 z\,\mathbf{\hat i} + y^2 x\,\mathbf{\hat j} + (y + 2z)\,\mathbf{\hat k}\)

    Answer
    \(\text{curl} \,\vecs F = \,\mathbf{\hat i} + x^2\,\mathbf{\hat j} + y^2\,\mathbf{\hat k}\)

    9. \(\vecs F(x,y,z) = 3xyz^2\,\mathbf{\hat i} + y^2 \sin z\,\mathbf{\hat j} + xe^{2z}\,\mathbf{\hat k}\)

    10. \(\vecs F(x,y,z) = x^2 yz\,\mathbf{\hat i} + xy^2 z\,\mathbf{\hat j} + xyz^2\,\mathbf{\hat k}\)

    Answer
    \(\text{curl} \, \vecs F = (xz^2 - xy^2)\,\mathbf{\hat i} + (x^2 y - yz^2)\,\mathbf{\hat j} + (y^2z - x^2z)\,\mathbf{\hat k}\)

    11. \(\vecs F(x,y,z) = (x \, \cos y)\,\mathbf{\hat i} + xy^2\,\mathbf{\hat j}\)

    12. \(\vecs F(x,y,z) = (x - y)\,\mathbf{\hat i} + (y - z)\,\mathbf{\hat j} + (z - x)\,\mathbf{\hat k}\)

    Answer
    \(\text{curl }\, \vecs F = \,\mathbf{\hat i} + \,\mathbf{\hat j} + \,\mathbf{\hat k}\)

    13. \(\vecs F(x,y,z) = xyz\,\mathbf{\hat i} + x^2y^2z^2 \,\mathbf{\hat j} + y^2z^3 \,\mathbf{\hat k}\)

    14. \(\vecs F(x,y,z) = xy\,\mathbf{\hat i} + yz \,\mathbf{\hat j} + xz \,\mathbf{\hat k}\)

    Answer
    \(\text{curl }\, \vecs F = - y\,\mathbf{\hat i} - z \,\mathbf{\hat j} - x \,\mathbf{\hat k}\)

    15. \(\vecs F(x,y,z) = x^2\,\mathbf{\hat i} + y^2 \,\mathbf{\hat j} + z^2 \,\mathbf{\hat k}\)

    16. \(\vecs F(x,y,z) = ax\,\mathbf{\hat i} + by \,\mathbf{\hat j} + c \,\mathbf{\hat k}\) for constants \(a, \,b, \,c\).

    Answer
    \(\text{curl }\, \vecs F = \vecs 0\)

    For the following exercises, find the divergence of \(\vecs F\).

    17. \(\vecs F(x,y,z) = x^2 z\,\mathbf{\hat i} + y^2 x \,\mathbf{\hat j} + (y + 2z) \,\mathbf{\hat k}\)

    18. \(\vecs F(x,y,z) = 3xyz^2\,\mathbf{\hat i} + y^2 \sin z \,\mathbf{\hat j} + xe^2 \,\mathbf{\hat k}\)

    Answer
    \(\text{div}\,\vecs F = 3yz^2 + 2y \, \sin z + 2xe^{2z}\)

    19. \(\vecs{F}(x,y) = (\sin x)\,\mathbf{\hat i} + (\cos y) \,\mathbf{\hat j}\)

    20. \(\vecs F(x,y,z) = x^2\,\mathbf{\hat i} + y^2 \,\mathbf{\hat j} + z^2 \,\mathbf{\hat k}\)

    Answer
    \(\text{div}\,\vecs F = 2(x + y + z)\)

    21. \(\vecs F(x,y,z) = (x - y)\,\mathbf{\hat i} + (y - z) \,\mathbf{\hat j} + (z - x) \,\mathbf{\hat k}\)

    22. \(\vecs{F}(x,y) = \dfrac{x}{\sqrt{x^2+y^2}}\,\mathbf{\hat i} + \dfrac{y}{\sqrt{x^2+y^2}}\,\mathbf{\hat j}\)

    Answer
    \(\text{div}\,\vecs F = \dfrac{1}{\sqrt{x^2+y^2}}\)

    23. \(\vecs{F}(x,y) = x\,\mathbf{\hat i} - y \,\mathbf{\hat j}\)

    24. \(\vecs F(x,y,z) = ax\,\mathbf{\hat i} + by \,\mathbf{\hat j} + c \,\mathbf{\hat k}\) for constants \(a, \,b, \,c\).

    Answer
    \(\text{div}\,\vecs F = a + b\)

    25. \(\vecs F(x,y,z) = xyz\,\mathbf{\hat i} + x^2y^2z^2\,\mathbf{\hat j} + y^2z^3\,\mathbf{\hat k}\)

    26. \(\vecs F(x,y,z) = xy\,\mathbf{\hat i} + yz\,\mathbf{\hat j} + xz\,\mathbf{\hat k}\)

    Answer
    \(\text{div}\,\vecs F = x + y + z\)

    For exercises 27 & 28, determine whether each of the given scalar functions is harmonic.

    27. \(u(x,y,z) = e^{-x} (\cos y - \sin y)\)

    28. \(w(x,y,z) = (x^2 + y^2 + z^2)^{-1/2}\)

    Answer
    Harmonic

    29. If \(\vecs F(x,y,z) = 2\,\mathbf{\hat i} + 2x j + 3y k\) and \(\vecs G(x,y,z) = x\,\mathbf{\hat i} - y \,\mathbf{\hat j} + z \,\mathbf{\hat k}\), find \(\text{curl} \, (\vecs F \times \vecs G)\).

    30. If \(\vecs F(x,y,z) = 2\,\mathbf{\hat i} + 2x j + 3y k\) and \(\vecs G(x,y,z) = x\,\mathbf{\hat i} - y \,\mathbf{\hat j} + z \,\mathbf{\hat k}\), find \(\text{div} \, (\vecs F \times \vecs G)\).

    Answer
    \(\text{div} \, (\vecs F \times \vecs G) = 2z + 3x\)

    31. Find \(\text{div} \,\vecs F\), given that \(\vecs F = \vecs \nabla f\), where \(f(x,y,z) = xy^3z^2\).

    32. Find the divergence of \(\vecs F\) for vector field \(\vecs F(x,y,z) = (y^2 + z^2) (x + y) \,\mathbf{\hat i} + (z^2 + x^2)(y + z) \,\mathbf{\hat j} + (x^2 + y^2)(z + x) \,\mathbf{\hat k}\).

    Answer
    \(\text{div}\,\vecs F = 2r^2\)

    33. Find the divergence of \(\vecs F\) for vector field \(\vecs F(x,y,z) = f_1(y,z)\,\mathbf{\hat i} + f_2 (x,z) \,\mathbf{\hat j} + f_3 (x,y) \,\mathbf{\hat k}\).

    For exercises 34 - 36, use \(r = |\vecs r|\) and \(\vecs r(x,y,z) = \langle x,y,z\rangle\).

    34. Find the \(\text{curl} \, \vecs r\)

    Answer
    \(\text{curl} \, \vecs r = \vecs 0\)

    35. Find the \(\text{curl}\, \dfrac{\vecs r}{r}\).

    36. Find the \(\text{curl}\, \dfrac{\vecs r}{r^3}\).

    Answer
    \(\text{curl}\, \dfrac{\vecs r}{r^3} = \vecs 0\)

    37. Let \(\vecs{F}(x,y) = \dfrac{-y\,\mathbf{\hat i}+x\,\mathbf{\hat j}}{x^2+y^2}\), where \(\vecs F\) is defined on \(\big\{(x,y) \in \mathbb{R} | (x,y) \neq (0,0) \big\}\). Find \(\text{curl}\, \vecs F\).

    For the following exercises, use a computer algebra system to find the curl of the given vector fields.

    38. [T] \(\vecs F(x,y,z) = \arctan \left(\dfrac{x}{y}\right)\,\mathbf{\hat i} + \ln \sqrt{x^2 + y^2} \,\mathbf{\hat j}+ \,\mathbf{\hat k}\)

    Answer
    \(\text{curl }\, \vecs F = \dfrac{2x}{x^2+y^2}\,\mathbf{\hat k}\)

    39. [T] \(\vecs F(x,y,z) = \sin (x - y)\,\mathbf{\hat i} + \sin (y - z) \,\mathbf{\hat j} + \sin (z - x) \,\mathbf{\hat k}\)

    For the following exercises, find the divergence of \(\vecs F\) at the given point.

    40. \(\vecs F(x,y,z) = \,\mathbf{\hat i} + \,\mathbf{\hat j} + \,\mathbf{\hat k}\) at \((2, -1, 3)\)

    Answer
    \(\text{div}\,\vecs F = 0\)

    41. \(\vecs F(x,y,z) = xyz \,\mathbf{\hat i} + y \,\mathbf{\hat j} + z\,\mathbf{\hat k}\) at \((1, 2, 3)\)

    42. \(\vecs F(x,y,z) = e^{-xy}\,\mathbf{\hat i} + e^{xz}\,\mathbf{\hat j} + e^{yz}\,\mathbf{\hat k}\) at \((3, 2, 0)\)

    Answer
    \(\text{div}\,\vecs F = 2 - 2e^{-6}\)

    43. \(\vecs F(x,y,z) = xyz \,\mathbf{\hat i} + y \,\mathbf{\hat j} + z\,\mathbf{\hat k}\) at \((1, 2, 1)\)

    44. \(\vecs F(x,y,z) = e^x \sin y \,\mathbf{\hat i} - e^x \cos y\,\mathbf{\hat j} \) at \((0, 0, 3)\)

    Answer
    \(\text{div}\,\vecs F = 0\)

    For exercises 45- 49, find the curl of \(\vecs F\) at the given point.

    45. \(\vecs F(x,y,z) = \,\mathbf{\hat i} + \,\mathbf{\hat j} + \,\mathbf{\hat k}\) at \((2, -1, 3)\)

    46. \(\vecs F(x,y,z) = xyz \,\mathbf{\hat i} + y\,\mathbf{\hat j} + x\,\mathbf{\hat k}\) at \((1, 2, 3)\)

    Answer
    \(\text{curl }\, \vecs F = \mathbf{\hat j} - 3\,\mathbf{\hat k}\)

    47. \(\vecs F(x,y,z) = e^{-xy}\,\mathbf{\hat i} + e^{xz}\,\mathbf{\hat j} + e^{yz}\,\mathbf{\hat k}\) at \((3, 2, 0)\)

    48. \(\vecs F(x,y,z) = xyz \,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}\) at \((1, 2, 1)\)

    Answer
    \(\text{curl }\, \vecs F = 2\,\mathbf{\hat j} - \,\mathbf{\hat k}\)

    49. \(\vecs F(x,y,z) = e^x \sin y \,\mathbf{\hat i} - e^x \cos y\,\mathbf{\hat j} \) at \((0, 0, 3)\)

    50. Let \(\vecs F(x,y,z) = (3x^2 y + az) \,\mathbf{\hat i} + x^3\,\mathbf{\hat j} + (3x + 3z^2)\,\mathbf{\hat k}\). For what value of \(a\) is \(\vecs F\) conservative?

    Answer
    \(a = 3\)

    51. Given vector field \(\vecs{F}(x,y) = \dfrac{1}{x^2+y^2} \langle -y,x\rangle\) on domain \(D = \dfrac{\mathbb{R}^2}{\{(0,0)\}} = \big\{(x,y) \in \mathbb{R}^2 |(x,y) \neq (0,0) \big\}\), is \(\vecs F\) conservative?

    52. Given vector field \(\vecs{F}(x,y) = \dfrac{1}{x^2+y^2} \langle x,y\rangle\) on domain \(D = \dfrac{\mathbb{R}^2}{\{(0,0)\}}\), is \(\vecs F\) conservative?

    Answer
    \(\vecs F\) is conservative.

    53. Find the work done by force field \(\vecs{F}(x,y) = e^{-y}\,\mathbf{\hat i} - xe^{-y}\,\mathbf{\hat j}\) in moving an object from\(P(0, 1)\) to \(Q(2, 0)\). Is the force field conservative?

    54. Compute divergence \(\vecs F(x,y,z) = (\sinh x)\,\mathbf{\hat i} + (\cosh y)\,\mathbf{\hat j} - xyz\,\mathbf{\hat k}\).

    Answer
    \(\text{div}\,\vecs F = \cosh x + \sinh y - xy\)

    55. Compute \(\text{curl }\, \vecs F = (\sinh x)\,\mathbf{\hat i} + (\cosh y)\,\mathbf{\hat j} - xyz\,\mathbf{\hat k}\).

    For the following exercises, consider a rigid body that is rotating about the \(x\)-axis counterclockwise with constant angular velocity \(\vecs \omega = \langle a,b,c \rangle\). If \(P\) is a point in the body located at \(\vecs r = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}\), the velocity at \(P\) is given by vector field \(\vecs F = \vecs \omega \times \vecs r\).

    A three dimensional diagram of an object rotating about the x axis in a counterclockwise manner with constant angular velocity w = <a,b,c>. The object is roughly a sphere with pointed ends on the x axis, which cuts it in half. An arrow r is drawn from (0,0,0) to P(x,y,z) and down from P(x,y,z) to the x axis.

    56. Express \(\vecs F\) in terms of \(\,\mathbf{\hat i},\;\,\mathbf{\hat j},\) and \(\,\mathbf{\hat k}\) vectors.

    Answer
    \(\vecs F = (bz - cy)\,\mathbf{\hat i}+(cx - az)\,\mathbf{\hat j} + (ay - bx)\,\mathbf{\hat k}\)

    57. Find \(\text{div} \, F\).

    58. Find \(\text{curl} \, F\)

    Answer
    \(\text{curl }\, \vecs F = 2\vecs\omega\)

    In the following exercises, suppose that \(\vecs \nabla \cdot \vecs F = 0\) and \(\vecs \nabla \cdot \vecs G = 0\).

    59. Does \(\vecs F + \vecs G\) necessarily have zero divergence?

    60. Does \(\vecs F \times \vecs G\) necessarily have zero divergence?

    Answer
    \(\vecs F \times \vecs G\) does not have zero divergence.

    In the following exercises, suppose a solid object in \(\mathbb{R}^3\) has a temperature distribution given by \(T(x,y,z)\). The heat flow vector field in the object is \(\vecs F = - k \vecs \nabla T\), where \(k > 0\) is a property of the material. The heat flow vector points in the direction opposite to that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is \(\vecs \nabla \cdot \vecs F = -k \vecs \nabla \cdot \vecs \nabla T = - k \vecs \nabla^2 T\).

    61. Compute the heat flow vector field.

    62. Compute the divergence.

    Answer
    \(\vecs \nabla \cdot \vecs F = -200 k [1 + 2(x^2 + y^2 + z^2)] e^{-x^2+y^2+z^2}\)

    63. [T] Consider rotational velocity field \(\vecs v = \langle 0,10z, -10y \rangle\). If a paddlewheel is placed in plane \(x + y + z = 1\) with its axis normal to this plane, using a computer algebra system, calculate how fast the paddlewheel spins in revolutions per unit time.

    A three dimensional diagram of a rotational velocity field. The arrows are showing a rotation in a clockwise manner. A paddlewheel is shown in plan x + y + z = 1 with n extended out perpendicular to the plane.

    Contributors

    Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

     


    This page titled 15.5E: Divergence and Curl (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.