Skip to main content
Mathematics LibreTexts

Table of Laplace Transforms

  • Page ID
    20007
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Table of Laplace Transforms
    \(f(t) = \mathscr{L}^{-1}\{F(s)\}\) \(F(s)= \mathscr{L}\{F(s)\}\) \(f(t) = \mathscr{L}^{-1}\{F(s)\}\) \(F(s)= \mathscr{L}\{F(s)\}\)
    \(1. \quad 1\) \(\quad \dfrac{1}{s}\) \(2. \quad t\) \(\quad \dfrac{1}{s^2}\)
    \(3. \quad t^n, \; n = 1, 2, 3, \cdots\) \(\quad \dfrac{n!}{s^{n+1}}\) \(4. \quad e^{at}\) \(\quad \dfrac{1}{s-a}\)
    \(5. \quad \sin at \) \(\quad \dfrac{a}{s^2+a^2}\) \(6. \quad \cos at\) \(\quad \dfrac{s}{s^2+a^2}\)
    \(7. \quad \sinh at \) \(\quad \dfrac{a}{s^2-a^2}\) \(8. \quad \cosh at\) \(\quad \dfrac{s}{s^2-a^2}\)
    \(9. \quad e^{at}\cdot f(t)\) \(\quad F(s - a)\)

    Unit Step or Heavyside Function
    \(10. \quad \mathscr{U}(t - a)\)

    \(\quad \dfrac{e^{-as}}{s}\)

    \(11. \quad f(t - a)\cdot\mathscr{U}(t - a)\) \(\quad e^{-as}\cdot F(s)\) \(12. \quad f(t)\cdot\mathscr{U}(t - a)\) \(\quad e^{-as}\cdot \mathscr{L}\{ f(t+a)\}\)
    \(13. \quad f'(t) \) \(\quad s F(s) - f(0)\) \(14. \quad f''(t) \) \(\quad s^2 F(s) -s\cdot f(0) - f'(0)\)
    \(15. \quad t\cdot f(t) \) \(\quad -F'(s)\) \(16. \quad f^{(n)}(t) \) \(s^n F(s) - s^{(n-1)}f(0) - \cdots\)
    \(- s\, f^{(n-2)}(0) - f^{(n-1)}(0)\)
    \(17. \quad t^n\cdot f(t)\) \(\quad (-1)^n \dfrac{d^n}{ds^n}\big(F(s)\big)\) \(18. \quad \dfrac{1}{t}\cdot f(t) \) \(\quad\displaystyle \int_s^\infty F(w)\,dw\)

    Dirac Delta Function
    \(19. \quad \delta(t - a)\)


    \(\quad e^{-as}\)

    Convolution
    \(20. \quad f(t) * g(t)\)

    \(\quad F(s)\cdot G(s)\)

    Dirac Delta Function
    \(21. \quad \delta(t - a)f(t)\)

    \(\quad f(a)\cdot e^{-as}\)

    Periodic function
    with period T

    \(22. \quad f(t + T) = f(t) \)

    \(\displaystyle \dfrac{F_T(s)}{1-e^{-Ts}} \quad = \quad \dfrac{\int_0^T e^{-st} f(t)\, dt}{1-e^{-Ts}}\)

           

     


    This page titled Table of Laplace Transforms is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Paul Seeburger.

    • Was this article helpful?