Skip to main content
Mathematics LibreTexts

2.3.1: Existence and Uniqueness of Solutions of Nonlinear Equations (Exercises)

  • Page ID
    30696
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q2.3.1

    In Exercises 2.3.1-2.3.13, find all \((x_0,y_0)\) for which Theorem 2.3.1 implies that the initial value problem \(y'=f(x,y),\ y(x_0)=y_0\) has (a) a solution and (b) a unique solution on some open interval that contains \(x_0\).

    1. \( {y'={x^2+y^2 \over \sin x}}\)

    2. \( {y'={e^x+y \over x^2+y^2}}\)

    3. \(y'= \tan xy\)

    4. \( {y'={x^2+y^2 \over \ln xy}}\)

    5. \(y'= (x^2+y^2)y^{1/3}\)

    6. \(y'=2xy\)

    7. \( {y'=\ln(1+x^2+y^2)}\)

    8. \( {y'={2x+3y \over x-4y}}\)

    9. \( {y'=(x^2+y^2)^{1/2}}\)

    10. \(y' = x(y^2-1)^{2/3}\)

    11. \(y'=(x^2+y^2)^2\)

    12. \(y'=(x+y)^{1/2}\)

    13. \( {y'={\tan y \over x-1}}\)

    Q2.3.2

    14. Apply Theorem 2.3.1 to the initial value problem \[y'+p(x)y = q(x), \quad y(x_0)=y_0 \nonumber \] for a linear equation, and compare the conclusions that can be drawn from it to those that follow from Theorem 2.1.2.

    15.

    1. Verify that the function \[y = \left\{ \begin{array}{cl} (x^2-1)^{5/3}, & -1 < x < 1, \\[4pt] 0, & |x| \ge 1, \end{array} \right. \nonumber \] is a solution of the initial value problem \[y'={10\over 3}xy^{2/5}, \quad y(0)=-1 \nonumber \] on \((-\infty,\infty)\). HINT: You'll need the definition \[y'(\overline{x})=\lim_{x\to\overline{x}}\frac{y(x)-y(\overline{x})}{x-\overline{x}} \nonumber \] to verify that \(y\) satisfies the differential equation at \(\overline{x}=\pm 1\).
    2. Verify that if \(\epsilon_i=0\) or \(1\) for \(i=1\), \(2\) and \(a\), \(b>1\), then the function \[y = \left\{ \begin{array}{cl} \epsilon_1(x^2-a^2)^{5/3}, & - \infty < x < -a, \\[4pt] 0, & -a \le x \le -1, \\[4pt] (x^2-1)^{5/3}, & -1 < x < 1, \\[4pt] 0, & 1 \le x \le b, \\[4pt] \epsilon_2(x^2-b^2)^{5/3}, & b < x < \infty, \end{array} \right. \nonumber \] is a solution of the initial value problem of a on \((-\infty,\infty)\).

    16. Use the ideas developed in Exercise 2.3.15 to find infinitely many solutions of the initial value problem \[y'=y^{2/5}, \quad y(0)=1 \nonumber \] on \((-\infty,\infty)\).

    17. Consider the initial value problem \[y' = 3x(y-1)^{1/3}, \quad y(x_0) = y_0. \tag{A} \]

    1. For what points \((x_0,y_0)\) does Theorem 2.3.1 imply that (A) has a solution?
    2. For what points \((x_0,y_0)\) does Theorem 2.3.1 imply that (A) has a unique solution on some open interval that contains \(x_0\)?

    18. Find nine solutions of the initial value problem \[y'=3x(y-1)^{1/3}, \quad y(0)=1 \nonumber \]that are all defined on \((-\infty,\infty)\) and differ from each other for values of \(x\) in every open interval that contains \(x_0=0\).

    19. From Theorem 2.3.1, the initial value problem \[y'=3x(y-1)^{1/3}, \quad y(0)=9 \nonumber \] has a unique solution on an open interval that contains \(x_0=0\). Find the solution and determine the largest open interval on which it is unique.

    20.

    1. From Theorem 2.3.1, the initial value problem \[y'=3x(y-1)^{1/3}, \quad y(3)=-7 \tag{A} \] has a unique solution on some open interval that contains \(x_0=3\). Determine the largest such open interval, and find the solution on this interval.
    2. Find infinitely many solutions of (A), all defined on \((-\infty,\infty)\).

    21. Prove:

    1. If \[f(x,y_0) = 0,\quad a<x<b, \tag{A} \] and\(x_{0}\) is in \((a,b)\), then \(y≡y_{0}\) is a solution of \[\begin{aligned} y'=f(x,y),\quad y(x_{0})=y_{0}\end{aligned} \nonumber \] on \((a,b)\).
    2. If \(f\) and \(f_y\) are continuous on an open rectangle that contains \((x_0,y_0)\) and (A) holds, no solution of \(y'=f(x,y)\) other than \(y\equiv y_0\) can equal \(y_0\) at any point in \((a,b)\).

    This page titled 2.3.1: Existence and Uniqueness of Solutions of Nonlinear Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?