In general, if \(k\) is any positive integer and \(f\) satisfies appropriate assumptions, there are numerical methods with local truncation error \(O(h^{k+1})\) for solving an initial value problem
\[\label{eq:3.3.1} y'=f(x,y),\quad y(x_0)=y_0. \]
Moreover, it can be shown that a method with local truncation error \(O(h^{k+1})\) has global truncation error \(O(h^k)\). In Sections 3.1 and 3.2 we studied numerical methods where \(k=1\) and \(k=2\). We’ll skip methods for which \(k=3\) and proceed to the Runge-Kutta method, the most widely used method, for which \(k=4\). The magnitude of the local truncation error is determined by the fifth derivative \(y^{(5)}\) of the solution of the initial value problem. Therefore the local truncation error will be larger where \(|y^{(5)}|\) is large, or smaller where \(|y^{(5)}|\) is small. The Runge-Kutta method computes approximate values \(y_1\), \(y_2\), …, \(y_n\) of the solution of Equation \ref{eq:3.3.1} at \(x_0\), \(x_0+h\), …, \(x_0+nh\) as follows: Given \(y_i\), compute
\[\begin{align*} k_{1i}&=f(x_i,y_i),\\[4pt] k_{2i}&=f \left(x_i+{h\over2},y_i+{h\over2}k_{1i}\right),\\[4pt] k_{3i}&=f\left(x_i+{h\over2},y_i+{h\over2}k_{2i}\right),\\[4pt] k_{4i}&=f(x_i+h,y_i+hk_{3i}),\end{align*} \]
and
\[y_{i+1}=y_i+{h\over6}(k_{1i}+2k_{2i}+2k_{3i}+k_{4i}).\nonumber \]
The next example, which deals with the initial value problem considered in Examples and Example 3.3.1
, illustrates the computational procedure indicated in the Runge-Kutta method.
Use the Runge-Kutta method with \(h=0.1\) to find approximate values for the solution of the initial value problem
\[\label{eq:3.3.2} y'+2y=x^3e^{-2x},\quad y(0)=1, \]
at \(x=0.1,0.2\).
Solution
Again we rewrite Equation \ref{eq:3.3.2} as
\[y'=-2y+x^3e^{-2x},\quad y(0)=1, \nonumber \]
which is of the form Equation \ref{eq:3.3.1}, with
\[f(x,y)=-2y+x^3e^{-2x},\ x_0=0,\mbox{ and}\ y_0=1. \nonumber \]
The Runge-Kutta method yields
\[\begin{aligned} k_{10} & = f(x_0,y_0) = f(0,1)=-2,\\[4pt] k_{20} & = f(x_0+h/2,y_0+hk_{10}/2)=f(.05,1+(.05)(-2))\\[4pt] &= f(.05,.9)=-2(.9)+(.05)^3e^{-.1}=-1.799886895,\\[4pt] k_{30} & = f(x_0+h/2,y_0+hk_{20}/2)=f(.05,1+(.05)(-1.799886895))\\[4pt] &= f(.05,.910005655)=-2(.910005655)+(.05)^3e^{-.1}=-1.819898206,\\[4pt] k_{40} & = f(x_0+h,y_0+hk_{30})=f(.1,1+(.1)(-1.819898206))\\[4pt] &=f(.1,.818010179)=-2(.818010179)+(.1)^3e^{-.2}=-1.635201628,\\[4pt] y_1&=y_0+{h\over6}(k_{10}+2k_{20}+2k_{30}+k_{40}),\\[4pt] &=1+{.1\over6}(-2+2(-1.799886895)+2(-1.819898206) -1.635201628)=.818753803,\\[4pt] k_{11} & = f(x_1,y_1) = f(.1,.818753803)=-2(.818753803))+(.1)^3e^{-.2}=-1.636688875,\\[4pt] k_{21} & = f(x_1+h/2,y_1+hk_{11}/2)=f(.15,.818753803+(.05)(-1.636688875))\\[4pt] &= f(.15,.736919359)=-2(.736919359)+(.15)^3e^{-.3}=-1.471338457,\\[4pt] k_{31} & = f(x_1+h/2,y_1+hk_{21}/2)=f(.15,.818753803+(.05)(-1.471338457))\\[4pt] &= f(.15,.745186880)=-2(.745186880)+(.15)^3e^{-.3}=-1.487873498,\\[4pt] k_{41} & = f(x_1+h,y_1+hk_{31})=f(.2,.818753803+(.1)(-1.487873498))\\[4pt] &=f(.2,.669966453)=-2(.669966453)+(.2)^3e^{-.4}=-1.334570346,\\[4pt] y_2&=y_1+{h\over6}(k_{11}+2k_{21}+2k_{31}+k_{41}),\\[4pt] &=.818753803+{.1\over6}(-1.636688875+2(-1.471338457)+2(-1.487873498)-1.334570346) \\[4pt]&=.670592417.\end{aligned} \nonumber \]
The Runge-Kutta method is sufficiently accurate for most applications.
Table 3.3.1
shows results of using the Runge-Kutta method with step sizes \(h=0.1\) and \(h=0.05\) to find approximate values of the solution of the initial value problem
\[y'+2y=x^3e^{-2x},\quad y(0)=1 \nonumber \]
at \(x=0\), \(0.1\), \(0.2\), \(0.3\), …, \(1.0\). For comparison, it also shows the corresponding approximate values obtained with the improved Euler method in Example 3.2.2, and the values of the exact solution
\[y={e^{-2x}\over4}(x^4+4).\nonumber \]
The results obtained by the Runge-Kutta method are clearly better than those obtained by the improved Euler method in fact; the results obtained by the Runge-Kutta method with \(h=0.1\) are better than those obtained by the improved Euler method with \(h=0.05\).
|
Improved Euler |
Runge-Kutta |
|
x |
h=0.1 |
h=0.05 |
h=0.1 |
h-0.05 |
"exact" |
0.0 |
1.000000000 |
1.000000000 |
1.000000000 |
1.000000000 |
1.000000000 |
0.1 |
0.820040937 |
0.819050572 |
0.818753803 |
0.818751370 |
0.818751221 |
0.2 |
0.672734445 |
0.671086455 |
0.670592417 |
0.670588418 |
0.670588174 |
0.3 |
0.552597643 |
0.550543878 |
0.549928221 |
0.549923281 |
0.549922980 |
0.4 |
0.455160637 |
0.452890616 |
0.452210430 |
0.452205001 |
0.452204669 |
0.5 |
0.376681251 |
0.374335747 |
0.373633492 |
0.373627899 |
0.373627557 |
0.6 |
0.313970920 |
0.311652239 |
0.310958768 |
0.310953242 |
0.310952904 |
0.7 |
0.264287611 |
0.262067624 |
0.261404568 |
0.261399270 |
0.261398947 |
0.8 |
0.225267702 |
0.223194281 |
0.222575989 |
0.222571024 |
0.222570721 |
0.9 |
0.194879501 |
0.192981757 |
0.192416882 |
0.192412317 |
0.192412038 |
1.0 |
0.171388070 |
0.169680673 |
0.169173489 |
0.169169356 |
0.169169104 |
Table 3.3.1
: Numerical solution of \(y'+2y=x^3e^{-2x},\ y(0)=1\), by the Runge-Kuttta method and the improved Euler method.
Table 3.3.2
shows analogous results for the nonlinear initial value problem
\[y'=-2y^2+xy+x^2,\ y(0)=1. \nonumber \]
We applied the improved Euler method to this problem in Example 3.2.3.
|
Improved Euler |
Runge-Kutta |
|
x |
h=0.1 |
h=0.05 |
h=0.1 |
h-0.05 |
"exact" |
0.0 |
1.000000000 |
1.000000000 |
1.000000000 |
1.000000000 |
1.000000000 |
0.1 |
0.840500000 |
0.838288371 |
0.837587192 |
0.837584759 |
0.837584494 |
0.2 |
0.733430846 |
0.730556677 |
0.729644487 |
0.729642155 |
0.729641890 |
0.3 |
0.661600806 |
0.658552190 |
0.657582449 |
0.657580598 |
0.657580377 |
0.4 |
0.615961841 |
0.612884493 |
0.611903380 |
0.611901969 |
0.611901791 |
0.5 |
0.591634742 |
0.588558952 |
0.587576716 |
0.587575635 |
0.587575491 |
0.6 |
0.586006935 |
0.582927224 |
0.581943210 |
0.581942342 |
0.581942225 |
0.7 |
0.597712120 |
0.594618012 |
0.593630403 |
0.593629627 |
0.593629526 |
0.8 |
0.626008824 |
0.622898279 |
0.621908378 |
0.621907553 |
0.621907458 |
0.9 |
0.670351225 |
0.667237617 |
0.666251988 |
0.666250942 |
0.666250842 |
1.0 |
0.730069610 |
0.726985837 |
0.726017378 |
0.726015908 |
0.726015790 |
Table 3.3.2
: Numerical solution of \(y'=-2y^2+xy+x^2,\ y(0)=1\), by the Runge-Kuttta method and the improved Euler method.
Tables 3.3.3
and 3.3.4
show results obtained by applying the Runge-Kutta and Runge-Kutta semilinear methods to to the initial value problem
\[y'-2xy=1,\ y(0)=3, \nonumber \]
which we considered in Examples 3.3.3
and 3.3.4
\(x\) |
\(h=0.2\) |
\(h=0.1\) |
\(h=0.05\) |
"Exact" |
0.0 |
3.000000000 |
3.000000000 |
3.000000000 |
3.000000000 |
0.2 |
3.327846400 |
3.327851633 |
3.327851952 |
3.327851973 |
0.4 |
3.966044973 |
3.966058535 |
3.966059300 |
3.966059348 |
0.6 |
5.066996754 |
5.067037123 |
5.067039396 |
5.067039535 |
0.8 |
6.936534178 |
6.936690679 |
6.936700320 |
6.936700945 |
1.0 |
10.184232252 |
10.184877733 |
10.184920997 |
10.184923955 |
1.2 |
16.064344805 |
16.066915583 |
16.067098699 |
16.067111677 |
1.4 |
27.278771833 |
27.288605217 |
27.289338955 |
27.289392347 |
1.6 |
49.960553660 |
49.997313966 |
50.000165744 |
50.000377775 |
1.8 |
98.834337815 |
98.971146146 |
98.982136702 |
98.982969504 |
2.0 |
211.393800152 |
211.908445283 |
211.951167637 |
211.954462214 |
\(x\) |
\(h=0.2\) |
\(h=0.1\) |
\(h=0.05\) |
"Exact" |
0.0 |
3.000000000 |
3.000000000 |
3.000000000 |
3.000000000 |
0.2 |
3.327853286 |
3.327852055 |
3.327851978 |
3.327851973 |
0.4 |
3.966061755 |
3.966059497 |
3.966059357 |
3.966059348 |
0.6 |
5.067042602 |
5.067039725 |
5.067039547 |
5.067039535 |
0.8 |
6.936704019 |
6.936701137 |
6.936700957 |
6.936700945 |
1.0 |
10.184926171 |
10.184924093 |
10.184923963 |
10.184923955 |
1.2 |
16.067111961 |
16.067111696 |
16.067111678 |
16.067111677 |
1.4 |
27.289389418 |
27.289392167 |
27.289392335 |
27.289392347 |
1.6 |
50.000370152 |
50.000377302 |
50.000377745 |
50.000377775 |
1.8 |
98.982955511 |
98.982968633 |
98.982969450 |
98.982969504 |
2.0 |
211.954439983 |
211.954460825 |
211.954462127 |
211.954462214 |
Table 3.3.4
: Numerical solution of \(y'-2xy=1,\ y(0)=3\), by the Runge-Kutta semilinear method.
The Case Where xₒ Is not The Left Endpoint
So far in this chapter we’ve considered numerical methods for solving an initial value problem
\[\label{eq:3.3.3} y'=f(x,y),\quad y(x_0)=y_0 \]
on an interval \([x_0,b]\), for which \(x_0\) is the left endpoint. We haven’t discussed numerical methods for solving Equation \ref{eq:3.3.3} on an interval \([a,x_0]\), for which \(x_0\) is the right endpoint. To be specific, how can we obtain approximate values \(y_{-1}\), \(y_{-2}\), …, \(y_{-n}\) of the solution of Equation \ref{eq:3.3.3} at \(x_0-h, \dots,x_0-nh\), where \(h=(x_0-a)/n\)? Here’s the answer to this question:
Consider the initial value problem
\[\label{eq:3.3.4} z'=-f(-x,z),\quad z(-x_0)=y_0, \] on the interval \([-x_0,-a]\), for which \(-x_0\) is the left endpoint. Use a numerical method to obtain approximate values \(z_1\), \(z_2\), …, \(z_n\) of the solution of \(\eqref{eq:3.3.4}\) at \(-x_0+h\), \(-x_0+2h\), …, \(-x_0+nh=-a\). Then \(y_{-1}=z_1\), \(y_{-2}=z_2\), \(\dots\), \(y_{-n}=z_n\) are approximate values of the solution of \(\eqref{eq:3.3.3}\) at \(x_0-h\), \(x_0-2h\), …, \(x_0-nh=a\).
The justification for this answer is sketched in Exercise 3.3.23. Note how easy it is to make the change the given problem Equation \ref{eq:3.3.3} to the modified problem Equation \ref{eq:3.3.4} : first replace \(f\) by \(-f\) and then replace \(x\), \(x_0\), and \(y\) by \(-x\), \(-x_0\), and \(z\), respectively.
Use the Runge-Kutta method with step size \(h=0.1\) to find approximate values of the solution of
\[\label{eq:3.3.5} (y-1)^2y'=2x+3,\quad y(1)=4 \]
at \(x=0\), \(0.1\), \(0.2\), …, \(1\).
Solution
We first rewrite Equation \ref{eq:3.3.5} in the form Equation \ref{eq:3.3.3} as
\[\label{eq:3.3.6} y'={2x+3\over(y-1)^2},\quad y(1)=4. \]
Since the initial condition \(y(1)=4\) is imposed at the right endpoint of the interval \([0,1]\), we apply the Runge-Kutta method to the initial value problem
\[\label{eq:3.3.7} z'={2x-3\over(z-1)^2},\quad z(-1)=4 \]
on the interval \([-1,0]\). (You should verify that Equation \ref{eq:3.3.7} is related to Equation \ref{eq:3.3.6} as Equation \ref{eq:3.3.4} is related to Equation \ref{eq:3.3.3}.) Table [table:3.3.5} shows the results. Reversing the order of the rows in Table [table:3.3.5} and changing the signs of the values of \(x\) yields the first two columns of Table [table:3.3.6}. The last column of Table [table:3.3.6} shows the exact values of \(y\), which are given by
\[y=1+(3x^2+9x+15)^{1/3}.\nonumber \]
(Since the differential equation in Equation \ref{eq:3.3.6} is separable, this formula can be obtained by the method of Section 2.2.)
\(x\) |
\(z\) |
-1.0 |
4.000000000 |
-0.9 |
3.944536474 |
-0.8 |
3.889298649 |
-0.7 |
3.834355648 |
-0.6 |
3.779786399 |
-0.5 |
3.725680888 |
-0.4 |
3.672141529 |
-0.3 |
3.619284615 |
-0.2 |
3.567241862 |
-0.1 |
3.516161955 |
0.0 |
3.466212070 |
Table 3.3.5
: Numerical solution of \(z'= {2x-3\over(z-1)^2},\ z(-1)=4\), on \([-1,0]\).
\(x\) |
\(y\) |
Exact |
0.00 |
3.466212070 |
3.466212074 |
0.10 |
3.516161955 |
3.516161958 |
0.20 |
3.567241862 |
3.567241864 |
0.30 |
3.619284615 |
3.619284617 |
0.40 |
3.672141529 |
3.672141530 |
0.50 |
3.725680888 |
3.725680889 |
0.60 |
3.779786399 |
3.779786399 |
0.70 |
3.834355648 |
3.834355648 |
0.80 |
3.889298649 |
3.889298649 |
0.90 |
3.944536474 |
3.944536474 |
1.00 |
4.000000000 |
4.000000000 |
Table 3.3.6
: Numerical solution of \((y-1)^2y'=2x+3,\ y(1)=4\), on \([0,1]\).
We leave it to you to develop a procedure for handling the numerical solution of Equation \ref{eq:3.3.3} on an interval \([a,b]\) such that \(a<x_0<b\) (Exercises 3.3.26 and 3.3.27).