# 6.3.1: The RLC Circuit (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Q6.3.1

In Exercises 6.3.1-6.3.5 find the current in the $$RLC$$ circuit, assuming that $$E(t)=0$$ for $$t>0$$.

1. $$R=3$$ ohms;   $$L=.1$$ henrys;   $$C=.01$$ farads; $$Q_0=0$$ coulombs;  $$I_0=2$$ amperes.

2. $$R=2$$ ohms;   $$L=.05$$ henrys;   $$C=.01$$ farads’; $$Q_0=2$$ coulombs;  $$I_0=-2$$ amperes.

3. $$R=2$$ ohms;   $$L=.1$$ henrys;   $$C=.01$$ farads; $$Q_0=2$$ coulombs;  $$I_0=0$$ amperes.

4. $$R=6$$ ohms;   $$L=.1$$ henrys;   $$C=.004$$ farads’; $$Q_0=3$$ coulombs;  $$I_0=-10$$ amperes.

5. $$R=4$$ ohms;   $$L=.05$$ henrys;   $$C=.008$$ farads; $$Q_0=-1$$ coulombs;  $$I_0=2$$ amperes.

## Q6.3.2

In Exercises 6.3.6-6.3.10 find the steady state current in the circuit described by the equation.

6. $${1\over10}Q''+3Q'+100Q=5\cos10t-5\sin10t$$

7. $${1\over20}Q''+2Q'+100Q=10\cos25t-5\sin25t$$

8. $${1\over10}Q''+2Q'+100Q=3\cos50t-6\sin50t$$

9. $${1\over10}Q''+6Q'+250Q=10\cos100t+30\sin100t$$

10. $${1\over20}Q''+4Q'+125Q=15\cos30t-30\sin30t$$

## Q6.3.3

11. Show that if $$E(t)=U\cos\omega t+V\sin\omega t$$ where $$U$$ and $$V$$ are constants then the steady state current in the $$RLC$$ circuit shown in Figure 6.3.1 is $I_p={\omega^2RE(t)+(1/C-L\omega^2)E'(t)\over\Delta}, \nonumber$ where $\Delta=(1/C-L\omega^2)^2+R^2\omega^2. \nonumber$

12. Find the amplitude of the steady state current $$I_p$$ in the $$RLC$$ circuit shown in Figure 6.3.1 if $$E(t)=U\cos\omega t+V\sin\omega t$$, where $$U$$ and $$V$$ are constants. Then find the value $$\omega_0$$ of $$\omega$$ maximizes the amplitude, and find the maximum amplitude.

## Q6.3.4

In Exercises 6.3.13-6.3.17 plot the amplitude of the steady state current against $$ω$$. Estimate the value of $$ω$$ that maximizes the amplitude of the steady state current, and estimate this maximum amplitude. HINT: You can confirm your results by doing Exercise 6.3.12.

13. $${1\over10}Q''+3Q'+100Q=U\cos\omega t+V\sin\omega t$$

14. $${1\over20}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t$$

15. $${1\over10}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t$$

16. $${1\over10}Q''+6Q'+250Q=U\cos\omega t+V\sin\omega t$$

17. $${1\over20}Q''+4Q'+125Q=U\cos\omega t+V\sin\omega t$$

This page titled 6.3.1: The RLC Circuit (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.