Skip to main content
Mathematics LibreTexts

6.3.1: The RLC Circuit (Exercises)

  • Page ID
    30742
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q6.3.1

    In Exercises 6.3.1-6.3.5 find the current in the \(RLC\) circuit, assuming that \(E(t)=0\) for \(t>0\).

    1. \(R=3\) ohms;   \(L=.1\) henrys;   \(C=.01\) farads; \(Q_0=0\) coulombs;  \(I_0=2\) amperes.

    2. \(R=2\) ohms;   \(L=.05\) henrys;   \(C=.01\) farads’; \(Q_0=2\) coulombs;  \(I_0=-2\) amperes.

    3. \(R=2\) ohms;   \(L=.1\) henrys;   \(C=.01\) farads; \(Q_0=2\) coulombs;  \(I_0=0\) amperes.

    4. \(R=6\) ohms;   \(L=.1\) henrys;   \(C=.004\) farads’; \(Q_0=3\) coulombs;  \(I_0=-10\) amperes.

    5. \(R=4\) ohms;   \(L=.05\) henrys;   \(C=.008\) farads; \(Q_0=-1\) coulombs;  \(I_0=2\) amperes.

    Q6.3.2

    In Exercises 6.3.6-6.3.10 find the steady state current in the circuit described by the equation.

    6. \({1\over10}Q''+3Q'+100Q=5\cos10t-5\sin10t\)

    7. \({1\over20}Q''+2Q'+100Q=10\cos25t-5\sin25t\)

    8. \({1\over10}Q''+2Q'+100Q=3\cos50t-6\sin50t\)

    9. \({1\over10}Q''+6Q'+250Q=10\cos100t+30\sin100t\)

    10. \({1\over20}Q''+4Q'+125Q=15\cos30t-30\sin30t\)

    Q6.3.3

    11. Show that if \(E(t)=U\cos\omega t+V\sin\omega t\) where \(U\) and \(V\) are constants then the steady state current in the \(RLC\) circuit shown in Figure 6.3.1 is \[I_p={\omega^2RE(t)+(1/C-L\omega^2)E'(t)\over\Delta}, \nonumber \] where \[\Delta=(1/C-L\omega^2)^2+R^2\omega^2. \nonumber \]

    12. Find the amplitude of the steady state current \(I_p\) in the \(RLC\) circuit shown in Figure 6.3.1 if \(E(t)=U\cos\omega t+V\sin\omega t\), where \(U\) and \(V\) are constants. Then find the value \(\omega_0\) of \(\omega\) maximizes the amplitude, and find the maximum amplitude.

    Q6.3.4

    In Exercises 6.3.13-6.3.17 plot the amplitude of the steady state current against \(ω\). Estimate the value of \(ω\) that maximizes the amplitude of the steady state current, and estimate this maximum amplitude. HINT: You can confirm your results by doing Exercise 6.3.12.

    13. \({1\over10}Q''+3Q'+100Q=U\cos\omega t+V\sin\omega t\)

    14. \({1\over20}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t\)

    15. \({1\over10}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t\)

    16. \({1\over10}Q''+6Q'+250Q=U\cos\omega t+V\sin\omega t\)

    17. \({1\over20}Q''+4Q'+125Q=U\cos\omega t+V\sin\omega t\)


    This page titled 6.3.1: The RLC Circuit (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?