Skip to main content
Mathematics LibreTexts

7.3: Series Solutions Near an Ordinary Point II

  • Page ID
    30751
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section we continue to find series solutions

    \[y=\sum_{n=0}^\infty a_n(x-x_0)^n \nonumber \]

    of initial value problems

    \[\label{eq:7.3.1} P_0(x)y''+P_1(x)y'+P_2(x)y=0,\quad y(x_0)=a_0,\quad y'(x_0)=a_1, \]

    where \(P_0,P_1\), and \(P_2\) are polynomials and \(P_0(x_0)\ne0\), so \(x_0\) is an ordinary point of Equation \ref{eq:7.3.1}. However, here we consider cases where the differential equation in Equation \ref{eq:7.3.1} is not of the form

    \[\left(1+\alpha(x-x_0)^2\right)y''+\beta(x-x_0) y'+\gamma y=0,\nonumber \]

    so Theorem 7.2.2 does not apply, and the computation of the coefficients \(\{a_n\}\) is more complicated. For the equations considered here it is difficult or impossible to obtain an explicit formula for \(a_n\) in terms of \(n\). Nevertheless, we can calculate as many coefficients as we wish. The next three examples illustrate this.

    Example 7.4.1

    Find the coefficients \(a_0\), …, \(a_7\) in the series solution \(y=\sum^\infty_{n=0} a_nx^n\) of the initial value problem

    \[\label{eq:7.3.2} (1+x+2x^2)y''+(1+7x)y'+2y=0,\quad y(0)=-1,\quad y'(0)=-2. \]

    Solution

    Here

    \[Ly=(1+x+2x^2)y''+(1+7x)y'+2y.\nonumber \]

    The zeros \((-1\pm i\sqrt7)/4\) of \(P_0(x)=1+x+2x^2\) have absolute value \(1/\sqrt2\), so Theorem 7.2.2 implies that the series solution converges to the solution of Equation \ref{eq:7.3.2} on \((-1/\sqrt2,1/\sqrt2)\). Since

    \[y=\sum^\infty_{n=0} a_nx^n,\quad y'=\sum^\infty_{n=1} n a_nx^{n-1}\quad \text{and}\quad y''=\sum^\infty_{n=2}n(n-1)a_nx^{n-2},\nonumber \]

    \[\begin{aligned} Ly &= \sum^\infty_{n=2}n(n-1)a_nx^{n-2}+\sum^\infty_{n=2}n(n-1)a_nx^{n-1}+2\sum^\infty_{n=2}n(n-1)a_nx^n\\[4pt] &+\sum^\infty_{n=1}na_nx^{n-1}+7\sum^\infty_{n=1}na_nx^n+2\sum^\infty_{n=0} a_nx^n.\end{aligned} \nonumber \]

    Shifting indices so the general term in each series is a constant multiple of \(x^n\) yields

    \[\begin{aligned} Ly &= \sum^\infty_{n=0}(n+2)(n+1)a_{n+2}x^n+\sum^\infty_{n=0}(n+1)na_{n+1}x^n +2\sum^\infty_{n=0}n(n-1)a_nx^n\\[4pt] &+\sum^\infty_{n=0}(n+1)a_{n+1}x^n+7\sum^\infty_{n=0}na_nx^n+ 2\sum^\infty_{n=0}a_nx^n =\sum^\infty_{n=0}b_nx^n,\end{aligned} \nonumber \]

    where

    \[b_n=(n+2)(n+1)a_{n+2}+(n+1)^2a_{n+1}+(n+2)(2n+1)a_n.\nonumber \]

    Therefore \(y=\sum^\infty_{n=0}a_nx^n\) is a solution of \(Ly=0\) if and only if

    \[\label{eq:7.3.3} a_{n+2}=-{n+1\over n+2}\,a_{n+1}-{2n+1\over n+1}\,a_n,\,n\ge0. \]

    From the initial conditions in Equation \ref{eq:7.3.2}, \(a_0=y(0)=-1\) and \(a_1=y'(0)=-2\). Setting \(n=0\) in Equation \ref{eq:7.3.3} yields

    \[a_2=-{1\over2}a_1-a_0=-{1\over2}(-2)-(-1)=2.\nonumber \]

    Setting \(n=1\) in Equation \ref{eq:7.3.3} yields

    \[a_3=-{2\over3}a_2-{3\over2}a_1=-{2\over3}(2)-{3\over2}(-2)={5\over3}.\nonumber \]

    We leave it to you to compute \(a_4,a_5,a_6,a_7\) from Equation \ref{eq:7.3.3} and show that

    \[y=-1-2x+2x^2+{5\over3}x^3-{55\over12}x^4+{3\over4}x^5+{61\over8}x^6- {443\over56}x^7+\cdots.\nonumber \]

    We also leave it to you (Exercise [exer:7.3.13}) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of Equation \ref{eq:7.3.2} on \((-1/\sqrt2,1/\sqrt2)\).

    Example 7.4.2

    Find the coefficients \(a_0\), …, \(a_5\) in the series solution

    \[y=\sum^\infty_{n=0} a_n(x+1)^n\nonumber \]

    of the initial value problem

    \[\label{eq:7.3.4} (3+x)y''+(1+2x)y'-(2-x)y=0,\quad y(-1)=2,\quad y'(-1)=-3. \]

    Since the desired series is in powers of \(x+1\) we rewrite the differential equation in Equation \ref{eq:7.3.4} as \(Ly=0\), with

    \[Ly=\left(2+(x+1)\right)y''-\left(1-2(x+1)\right)y'-\left(3-(x+1)\right)y.\nonumber \]

    Since

    \[y=\sum^\infty_{n=0} a_n(x+1)^n,\quad y'=\sum^\infty_{n=1} n a_n(x+1)^{n-1}\quad \text{and}\quad y''=\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-2},\nonumber \]

    \[\begin{aligned} Ly &= 2\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-2}+\sum^\infty_{n=2}n(n-1)a_n(x+1)^{n-1} \\[4pt]&-\sum^\infty_{n=1}na_n(x+1)^{n-1}+2\sum^\infty_{n=1}na_n(x+1)^n\\[4pt] &-3\sum^\infty_{n=0}a_n(x+1)^n+\sum_{n=0}^\infty a_n(x+1)^{n+1}.\end{aligned} \nonumber \]

    Shifting indices so that the general term in each series is a constant multiple of \((x+1)^n\) yields

    \[\begin{aligned} Ly &= 2\sum^\infty_{n=0}(n+2)(n+1)a_{n+2}(x+1)^n+\sum^\infty_{n=0}(n+1)na_{n+1} (x+1)^n\\[4pt]&-\sum^\infty_{n=0}(n+1)a_{n+1}(x+1)^n +\sum^\infty_{n=0}(2n-3)a_n(x+1)^n+\sum^\infty_{n=1}a_{n-1}(x+1)^n\\[4pt] &= \sum^\infty_{n=0}b_n(x+1)^n,\end{aligned} \nonumber \]

    where

    \[b_0=4a_2-a_1-3a_0\nonumber \]

    and

    \[b_n=2(n+2)(n+1)a_{n+2}+(n^2-1)a_{n+1}+(2n-3)a_n+a_{n-1},\quad n\ge1.\nonumber \]

    Therefore \(y=\sum^\infty_{n=0}a_n(x+1)^n\) is a solution of \(Ly=0\) if and only if

    \[\label{eq:7.3.5} a_2={1\over4}(a_1+3a_0) \]

    and

    \[\label{eq:7.3.6} a_{n+2}=-{1\over2(n+2)(n+1)}\left[(n^2-1)a_{n+1}+(2n-3)a_n+a_{n-1}\right], \quad n\ge1. \]

    From the initial conditions in Equation \ref{eq:7.3.4}, \(a_0=y(-1)=2\) and \(a_1=y'(-1)=-3\). We leave it to you to compute \(a_2\), …, \(a_5\) with Equation \ref{eq:7.3.5} and Equation \ref{eq:7.3.6} and show that the solution of Equation \ref{eq:7.3.4} is

    \[y=-2-3(x+1)+{3\over4}(x+1)^2-{5\over12}(x+1)^3+{7\over48}(x+1)^4 -{1\over60}(x+1)^5+\cdots.\nonumber \]

    We also leave it to you (Exercise [exer:7.3.14}) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of Equation \ref{eq:7.3.4} on the interval of convergence of the power series solution.

    Example 7.4.3

    Find the coefficients \(a_0\), …, \(a_5\) in the series solution \(y=\sum^\infty_{n=0} a_nx^n\) of the initial value problem

    \[\label{eq:7.3.7} y''+3xy'+(4+2x^2)y=0,\quad y(0)=2,\quad y'(0)=-3. \]

    Solution

    Here

    \[Ly=y''+3xy'+(4+2x^2)y.\nonumber \]

    Since

    \[y=\sum^\infty_{n=0} a_nx^n,\quad y'=\sum^\infty_{n=1} n a_nx^{n-1},\quad\text {and} \quad y''=\sum^\infty_{n=2}n(n-1)a_nx^{n-2},\nonumber \]

    \[\begin{aligned} Ly &= \sum^\infty_{n=2}n(n-1)a_nx^{n-2} +3\sum^\infty_{n=1}na_nx^n+4\sum^\infty_{n=0}a_nx^n+2\sum^\infty_{n=0} a_nx^{n+2}.\end{aligned} \nonumber \]

    Shifting indices so that the general term in each series is a constant multiple of \(x^n\) yields

    \[Ly=\sum^\infty_{n=0}(n+2)(n+1)a_{n+2}x^n+\sum^\infty_{n=0}(3n+4)a_nx^n +2\sum^\infty_{n=2}a_{n-2}x^n=\sum_{n=0}^\infty b_nx^n\nonumber \]

    where

    \[b_0=2a_2+4a_0,\quad b_1=6a_3+7a_1,\nonumber \]

    and

    \[b_n=(n+2)(n+1)a_{n+2}+(3n+4)a_n+2a_{n-2},\quad n\ge2.\nonumber \]

    Therefore \(y=\sum^\infty_{n=0}a_nx^n\) is a solution of \(Ly=0\) if and only if

    \[\label{eq:7.3.8} a_2=-2a_0,\quad a_3=-{7\over6}a_1, \]

    and

    \[\label{eq:7.3.9} a_{n+2}=-{1\over (n+2)(n+1)}\left[(3n+4)a_n+2a_{n-2}\right],\quad n\ge2. \]

    From the initial conditions in Equation \ref{eq:7.3.7}, \(a_0=y(0)=2\) and \(a_1=y'(0)=-3\). We leave it to you to compute \(a_2\), …, \(a_5\) with Equation \ref{eq:7.3.8} and Equation \ref{eq:7.3.9} and show that the solution of Equation \ref{eq:7.3.7} is

    \[y=2-3x-4x^2+{7\over2}x^3+3x^4-{79\over40}x^5+\cdots.\nonumber \]

    We also leave it to you (Exercise [exer:7.3.15}) to verify numerically that the Taylor polynomials \(T_N(x)=\sum_{n=0}^Na_nx^n\) converge to the solution of Equation \ref{eq:7.3.9} on the interval of convergence of the power series solution.


    This page titled 7.3: Series Solutions Near an Ordinary Point II is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.