# 10.6.1: Constant Coefficient Homogeneous Systems III (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

$$\newcommand{\place}{\bigskip\hrule\bigskip\noindent} \newcommand{\threecol}[3]{\left[\begin{array}{r}#1\\#2\\#3\end{array}\right]} \newcommand{\threecolj}[3]{\left[\begin{array}{r}#1\$1\jot]#2\\[1\jot]#3\end{array}\right]} \newcommand{\lims}[2]{\,\bigg|_{#1}^{#2}} \newcommand{\twocol}[2]{\left[\begin{array}{l}#1\\#2\end{array}\right]} \newcommand{\ctwocol}[2]{\left[\begin{array}{c}#1\\#2\end{array}\right]} \newcommand{\cthreecol}[3]{\left[\begin{array}{c}#1\\#2\\#3\end{array}\right]} \newcommand{\eqline}[1]{\centerline{\hfill\displaystyle#1\hfill}} \newcommand{\twochar}[4]{\left|\begin{array}{cc} #1-\lambda\\#3-\lambda\end{array}\right|} \newcommand{\twobytwo}[4]{\left[\begin{array}{rr} #1\\#3\end{array}\right]} \newcommand{\threechar}[9]{\left[\begin{array}{ccc} #1-\lambda\\#4-\lambda\\#7 -\lambda\end{array}\right]} \newcommand{\threebythree}[9]{\left[\begin{array}{rrr} #1\\#4\\#7 \end{array}\right]} \newcommand{\solutionpart}[1]{\vskip10pt\noindent\underbar{\color{blue}\sc Solution({\bf #1})\ }} \newcommand{\Cex}{\fbox{\textcolor{red}{C}}\, } \newcommand{\CGex}{\fbox{\textcolor{red}{C/G}}\, } \newcommand{\Lex}{\fbox{\textcolor{red}{L}}\, } \newcommand{\matfunc}[3]{\left[\begin{array}{cccc}#1_{11}(t)_{12}(t)&\cdots _{1#3}(t)\\#1_{21}(t)_{22}(t)&\cdots_{2#3}(t)\\\vdots& \vdots&\ddots&\vdots\\#1_{#21}(t)_{#22}(t)&\cdots_{#2#3}(t) \end{array}\right]} \newcommand{\col}[2]{\left[\begin{array}{c}#1_1\\#1_2\\\vdots\\#1_#2\end{array}\right]} \newcommand{\colfunc}[2]{\left[\begin{array}{c}#1_1(t)\\#1_2(t)\\\vdots\\#1_#2(t)\end{array}\right]} \newcommand{\cthreebythree}[9]{\left[\begin{array}{ccc} #1\\#4\\#7 \end{array}\right]} 1 \ newcommand {\ dy} {\ ,\ mathrm {d}y} \ newcommand {\ dx} {\ ,\ mathrm {d}x} \ newcommand {\ dyx} {\ ,\ frac {\ mathrm {d}y}{\ mathrm {d}x}} \ newcommand {\ ds} {\ ,\ mathrm {d}s} \ newcommand {\ dt }{\ ,\ mathrm {d}t} \ newcommand {\dst} {\ ,\ frac {\ mathrm {d}s}{\ mathrm {d}t}}$$ ## Q10.6.1 In Exercises 10.6.1-10.6.16 find the general solution. 1. $${\bf y}'=\left[\begin{array}{cc}{-1}&{2}\\[4pt]{-5}&{5}\end{array}\right]{\bf y}$$ 2. $${\bf y}'=\left[\begin{array}{cc}{-11}&{4}\\[4pt]{-26}&{9}\end{array}\right]{\bf y}$$ 3. $${\bf y}'=\left[\begin{array}{cc}{1}&{2}\\[4pt]{-4}&{5}\end{array}\right]{\bf y}$$ 4. $${\bf y}'=\left[\begin{array}{cc}{5}&{-6}\\[4pt]{3}&{-1}\end{array}\right]{\bf y}$$ 5. $${\bf y}'=\left[\begin{array}{ccc}{3}&{-3}&{1}\\[4pt]{0}&{2}&{2}\\[4pt]{5}&{1}&{1}\end{array}\right]{\bf y}$$ 6. $${\bf y}'=\left[\begin{array}{ccc}{-3}&{3}&{1}\\[4pt]{1}&{-5}&{-3}\\[4pt]{-3}&{7}&{3}\end{array}\right]{\bf y}$$ 7. $${\bf y}'=\left[\begin{array}{ccc}{2}&{1}&{-1}\\[4pt]{0}&{1}&{1}\\[4pt]{1}&{0}&{1}\end{array}\right]{\bf y}$$ 8. $${\bf y}'=\left[\begin{array}{ccc}{-3}&{1}&{-3}\\[4pt]{4}&{-1}&{2}\\[4pt]{4}&{-2}&{3}\end{array}\right]{\bf y}$$ 9. $${\bf y}'=\left[\begin{array}{cc}{5}&{-4}\\[4pt]{10}&{1}\end{array}\right]{\bf y}$$ 10. $${\bf y}'=\frac{1}{3}\left[\begin{array}{cc}{7}&{-5}\\[4pt]{2}&{5}\end{array}\right]{\bf y}$$ 11. $${\bf y}'=\left[\begin{array}{cc}{3}&{2}\\[4pt]{-5}&{1}\end{array}\right]{\bf y}$$ 12. $${\bf y}'=\left[\begin{array}{cc}{34}&{52}\\[4pt]{-20}&{-30}\end{array}\right]{\bf y}$$ 13. $${\bf y}'=\left[\begin{array}{ccc}{1}&{1}&{2}\\[4pt]{1}&{0}&{-1}\\[4pt]{-1}&{-2}&{-1}\end{array}\right]{\bf y}$$ 14. $${\bf y}'=\left[\begin{array}{ccc}{3}&{-4}&{-2}\\[4pt]{-5}&{7}&{-8}\\[4pt]{-10}&{13}&{-8}\end{array}\right]{\bf y}$$ 15. $${\bf y}'=\left[\begin{array}{ccc}{6}&{0}&{-3}\\[4pt]{-3}&{3}&{3}\\[4pt]{1}&{-2}&{6}\end{array}\right]{\bf y}$$ 16. $${\bf y}'=\left[\begin{array}{ccc}{1}&{2}&{-2}\\[4pt]{0}&{2}&{-1}\\[4pt]{1}&{0}&{0}\end{array}\right]{\bf y}$$ ## Q10.6.2 In Exercises 10.6.17-10.6.24 solve the initial value problem. 17. $${\bf y}'=\left[\begin{array}{cc}{4}&{-6}\\[4pt]{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\[4pt]{2}\end{array}\right]$$ 18. $${\bf y}'=\left[\begin{array}{cc}{7}&{15}\\[4pt]{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{5}\\[4pt]{1}\end{array}\right]$$ 19. $${\bf y}'=\left[\begin{array}{cc}{7}&{-15}\\[4pt]{3}&{-5}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{17}\\[4pt]{7}\end{array}\right]$$ 20. $${\bf y}'=\frac{1}{6}\left[\begin{array}{cc}{4}&{-2}\\[4pt]{5}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{1}\\[4pt]{-1}\end{array}\right]$$ 21. $${\bf y}'=\left[\begin{array}{ccc}{5}&{2}&{-1}\\[4pt]{-3}&{2}&{2}\\[4pt]{1}&{3}&{2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{4}\\[4pt]{0}\\[4pt]{6}\end{array}\right]$$ 22. $${\bf y}'=\left[\begin{array}{ccc}{4}&{4}&{0}\\[4pt]{8}&{10}&{-20}\\[4pt]{2}&{3}&{-2}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{8}\\[4pt]{6}\\[4pt]{5}\end{array}\right]$$ 23. $${\bf y}'=\left[\begin{array}{ccc}{1}&{15}&{-15}\\[4pt]{-6}&{18}&{-22}\\[4pt]{-3}&{11}&{-15}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{15}\\[4pt]{17}\\[4pt]{10}\end{array}\right]$$ 24. $${\bf y}'=\left[\begin{array}{ccc}{4}&{-4}&{4}\\[4pt]{-10}&{3}&{15}\\[4pt]{2}&{-3}&{1}\end{array}\right]{\bf y},\quad{\bf y}(0)=\left[\begin{array}{c}{16}\\[4pt]{14}\\[4pt]{6}\end{array}\right]$$ ## Q10.6.3 25. Suppose an $$n\times n$$ matrix $$A$$ with real entries has a complex eigenvalue $$\lambda=\alpha+i\beta$$ ($$\beta\ne0$$) with associated eigenvector $${\bf x}={\bf u}+i{\bf v}$$, where $${\bf u}$$ and $${\bf v}$$ have real components. Show that $${\bf u}$$ and $${\bf v}$$ are both nonzero. 26. Verify that \[\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t) \quad \text{and}\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t),\nonumber$

are the real and imaginary parts of

$e^{\alpha t}(\cos\beta t+i\sin\beta t)({\bf u}+i{\bf v}).\nonumber$

27. Show that if the vectors $${\bf u}$$ and $${\bf v}$$ are not both $${\bf 0}$$ and $$\beta\ne0$$ then the vector functions

$\bf y_1=e^{\alpha t}({\bf u}\cos\beta t-{\bf v}\sin\beta t)\quad \mbox{ and }\quad \bf y_2=e^{\alpha t}({\bf u}\sin\beta t+{\bf v}\cos\beta t)\nonumber$

are linearly independent on every interval.

28. Suppose $${\bf u}=\left[\begin{array}{c}{u_{1}}\$4pt]{u_{2}}\end{array}\right]$$ and $${\bf v}=\left[\begin{array}{c}{v_{1}}\\[4pt]{v_{2}}\end{array}\right]$$ are not orthogonal; that is, $$({\bf u},{\bf v})\ne0$$. 1. Show that the quadratic equation \[({\bf u},{\bf v})k^2+(\|{\bf v}\|^2-\|{\bf u}\|^2)k-({\bf u},{\bf v})=0\nonumber$ has a positive root $$k_1$$ and a negative root $$k_2=-1/k_1$$.
2. Let $${\bf u}_1^{(1)}={\bf u}-k_1{\bf v}$$, $${\bf v}_1^{(1)}={\bf v}+k_1{\bf u}$$, $${\bf u}_1^{(2)}={\bf u}-k_2{\bf v}$$, and $${\bf v}_1^{(2)}={\bf v}+k_2{\bf u}$$, so that $$({\bf u}_1^{(1)},{\bf v}_1^{(1)}) =({\bf u}_1^{(2)},{\bf v}_1^{(2)})=0$$, from the discussion given above. Show that ${\bf u}_1^{(2)}={{\bf v}_1^{(1)}\over k_1} \quad \text{and} \quad {\bf v}_1^{(2)}=-{{\bf u}_1^{(1)}\over k_1}.\nonumber$
3. Let $${\bf U}_1$$, $${\bf V}_1$$, $${\bf U}_2$$, and $${\bf V}_2$$ be unit vectors in the directions of $${\bf u}_1^{(1)}$$, $${\bf v}_1^{(1)}$$, $${\bf u}_1^{(2)}$$, and $${\bf v}_1^{(2)}$$, respectively. Conclude from (a) that $${\bf U}_2={\bf V}_1$$ and $${\bf V}_2=-{\bf U}_1$$, and that therefore the counterclockwise angles from $${\bf U}_1$$ to $${\bf V}_1$$ and from $${\bf U}_2$$ to $${\bf V}_2$$ are both $$\pi/2$$ or both $$-\pi/2$$.

## Q10.6.4

In Exercises 10.6.29-10.6.32 find vectors $${\bf U}$$ and $${\bf V}$$ parallel to the axes of symmetry of the trajectories, and plot some typical trajectories.

29. $${\bf y}'=\left[\begin{array}{cc}{3}&{-5}\\[4pt]{5}&{-3}\end{array}\right]{\bf y}$$

30. $${\bf y}'=\left[\begin{array}{cc}{-15}&{10}\\[4pt]{-25}&{15}\end{array}\right]{\bf y}$$

31. $${\bf y}'=\left[\begin{array}{cc}{-4}&{8}\\[4pt]{-4}&{4}\end{array}\right]{\bf y}$$

32. $${\bf y}'=\left[\begin{array}{cc}{-3}&{-15}\\[4pt]{3}&{3}\end{array}\right]{\bf y}$$

## Q10.6.5

In Exercises 10.6.33-10.6.40 find vectors $${\bf U}$$ and $${\bf V}$$ parallel to the axes of symmetry of the shadow trajectories, and plot a typical trajectory.

33. $${\bf y}'=\left[\begin{array}{cc}{-5}&{6}\\[4pt]{-12}&{7}\end{array}\right]{\bf y}$$

34. $${\bf y}'=\left[\begin{array}{cc}{5}&{-12}\\[4pt]{6}&{-7}\end{array}\right]{\bf y}$$

35. $${\bf y}'=\left[\begin{array}{cc}{4}&{-5}\\[4pt]{9}&{-2}\end{array}\right]{\bf y}$$

36. $${\bf y}'=\left[\begin{array}{cc}{-4}&{9}\\[4pt]{-5}&{2}\end{array}\right]{\bf y}$$

37. $${\bf y}'=\left[\begin{array}{cc}{-1}&{10}\\[4pt]{-10}&{-1}\end{array}\right]{\bf y}$$

38. $${\bf y}'=\left[\begin{array}{cc}{-1}&{-5}\\[4pt]{20}&{-1}\end{array}\right]{\bf y}$$

39. $${\bf y}'=\left[\begin{array}{cc}{-7}&{10}\\[4pt]{-10}&{9}\end{array}\right]{\bf y}$$

40. $${\bf y}'=\left[\begin{array}{cc}{-7}&{6}\\[4pt]{-12}&{5}\end{array}\right]{\bf y}$$

This page titled 10.6.1: Constant Coefficient Homogeneous Systems III (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.