# 11.2: A.10.1- Section 10.1 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. $$\begin{array}{l}{Q'_{1}=2-\frac{1}{10}Q_{1}+\frac{1}{25}Q_{2}}\\[4pt]{Q'_{2}=6+\frac{3}{50}Q_{1}-\frac{1}{20}Q_{2}}\end{array}$$

2. $$\begin{array}{l}{Q'_{1}=12-\frac{5}{100+2t}Q_{1}+\frac{1}{100+3t}Q_{2}}\\[4pt]{Q'_{2}=5+\frac{1}{50+t}Q_{1}-\frac{4}{100+3t}Q_{2}}\end{array}$$

3. $$\begin{array}{l}{m_{1}y_{1}''=-(c_{1}+c_{2})y'_{1}+c_{2}y'_{2}-(k_{1}+k_{2})y_{1}+k_{2}y_{2}+F_{1}}\\[4pt]{m_{2}y_{2}''=(c_{2}-c_{3})y'_{1}-(c_{2}+c_{3})y'_{2}+c_{3}y'_{3}+(k_{2}-k_{3})y_{1}-(k_{2}+k_{3})y_{2}+k_{3}y_{3}+F_{2}}\\[4pt]{m_{3}y_{3}''=c_{3}y'_{1}+c_{3}y'_{2}-c_{3}y'_{3}+k_{3}y_{1}+k_{3}y_{2}-k_{3}y_{3}+F_{3}}\end{array}$$

4. $$x''=-\frac{\alpha}{m}x'+\frac{gR^{2}x}{(x^{2}+y^{2}+x^{2})^{3/2}}\qquad y''=-\frac{\alpha}{m}y'+\frac{gR^{2}y}{(x^{2}+y^{2}+x^{2})^{3/2}}\qquad z''=-\frac{\alpha}{m}z'+\frac{gR^{2}z}{(x^{2}+y^{2}+z^{2})^{3/2}}$$

5.

1. $$\begin{array}{l}{x'_{1}=x_{2}}\\[4pt]{x'_{2}=x_{3}}\\[4pt]{x'_{3}=f(t,x_{1},y_{1},y_{2})}\\[4pt]{y'_{1}=y_{2}}\\[4pt]{y'_{2}=g(t,y_{1},y_{2})}\end{array}$$
2. $$\begin{array}{l}{u'_{1}=f(t,u_{1},v_{1},v_{2},w_{2})}\\[4pt]{v'_{1}=v_{2}}\\[4pt]{v'_{2}=g(t,u_{1},v_{1},v_{2},w_{1})}\\[4pt]{w'_{1}=w_{2}}\\[4pt]{w'_{2}=h(t,u_{1},v_{1},v_{2},w_{1},w_{2})}\end{array}$$
3. $$\begin{array}{l}{y'_{1}=y_{2}}\\[4pt]{y'_{2}=y_{3}}\\[4pt]{y'_{3}=f(t,y_{1},y_{2},y_{3})}\end{array}$$

4. $$\begin{array}{l}{y'_{1}=y_{2}}\\[4pt]{y'_{2}=y_{3}}\\[4pt]{y'_{3}=y_{4}}\\[4pt]{y'_{4}=f(t,y_{1})}\end{array}$$
5. $$\begin{array}{l}{x'_{1}=x_{2}}\\[4pt]{x'_{2}=f(t,x_{1},y_{1})}\\[4pt]{y'_{1}=y_{2}}\\[4pt]{y'_{2}=g(t,x_{1},y_{1})}\end{array}$$

6. $$\begin{array}{ll}{x'=x_{1}}&{x'_{1}=-\frac{gR^{2}x}{(x^{2}+y^{2}+x^{2})^{3/2}}}\\[4pt]{y'=y_{1}}&{y'_{1}=-\frac{gR^{2}y}{(x^{2}+y^{2}+x^{2})^{3/2}}}\\[4pt]{z'=z_{1}}&{z'_{1}=-\frac{gR^{2}z}{(x^{2}+y^{2}+z^{2})^{3/2}}}\end{array}$$

This page titled 11.2: A.10.1- Section 10.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.