Skip to main content
Mathematics LibreTexts

11.2: A.10.1- Section 10.1 Answers

  • Page ID
    121459
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. \(\begin{array}{l}{Q'_{1}=2-\frac{1}{10}Q_{1}+\frac{1}{25}Q_{2}}\\[4pt]{Q'_{2}=6+\frac{3}{50}Q_{1}-\frac{1}{20}Q_{2}}\end{array}\)

    2. \(\begin{array}{l}{Q'_{1}=12-\frac{5}{100+2t}Q_{1}+\frac{1}{100+3t}Q_{2}}\\[4pt]{Q'_{2}=5+\frac{1}{50+t}Q_{1}-\frac{4}{100+3t}Q_{2}}\end{array}\)

    3. \(\begin{array}{l}{m_{1}y_{1}''=-(c_{1}+c_{2})y'_{1}+c_{2}y'_{2}-(k_{1}+k_{2})y_{1}+k_{2}y_{2}+F_{1}}\\[4pt]{m_{2}y_{2}''=(c_{2}-c_{3})y'_{1}-(c_{2}+c_{3})y'_{2}+c_{3}y'_{3}+(k_{2}-k_{3})y_{1}-(k_{2}+k_{3})y_{2}+k_{3}y_{3}+F_{2}}\\[4pt]{m_{3}y_{3}''=c_{3}y'_{1}+c_{3}y'_{2}-c_{3}y'_{3}+k_{3}y_{1}+k_{3}y_{2}-k_{3}y_{3}+F_{3}}\end{array}\)

    4. \(x''=-\frac{\alpha}{m}x'+\frac{gR^{2}x}{(x^{2}+y^{2}+x^{2})^{3/2}}\qquad y''=-\frac{\alpha}{m}y'+\frac{gR^{2}y}{(x^{2}+y^{2}+x^{2})^{3/2}}\qquad z''=-\frac{\alpha}{m}z'+\frac{gR^{2}z}{(x^{2}+y^{2}+z^{2})^{3/2}}\)

    5.

    1. \(\begin{array}{l}{x'_{1}=x_{2}}\\[4pt]{x'_{2}=x_{3}}\\[4pt]{x'_{3}=f(t,x_{1},y_{1},y_{2})}\\[4pt]{y'_{1}=y_{2}}\\[4pt]{y'_{2}=g(t,y_{1},y_{2})}\end{array}\)
    2. \(\begin{array}{l}{u'_{1}=f(t,u_{1},v_{1},v_{2},w_{2})}\\[4pt]{v'_{1}=v_{2}}\\[4pt]{v'_{2}=g(t,u_{1},v_{1},v_{2},w_{1})}\\[4pt]{w'_{1}=w_{2}}\\[4pt]{w'_{2}=h(t,u_{1},v_{1},v_{2},w_{1},w_{2})}\end{array}\)
    3. \(\begin{array}{l}{y'_{1}=y_{2}}\\[4pt]{y'_{2}=y_{3}}\\[4pt]{y'_{3}=f(t,y_{1},y_{2},y_{3})}\end{array}\)

    4. \(\begin{array}{l}{y'_{1}=y_{2}}\\[4pt]{y'_{2}=y_{3}}\\[4pt]{y'_{3}=y_{4}}\\[4pt]{y'_{4}=f(t,y_{1})}\end{array}\)
    5. \(\begin{array}{l}{x'_{1}=x_{2}}\\[4pt]{x'_{2}=f(t,x_{1},y_{1})}\\[4pt]{y'_{1}=y_{2}}\\[4pt]{y'_{2}=g(t,x_{1},y_{1})}\end{array}\)

    6. \(\begin{array}{ll}{x'=x_{1}}&{x'_{1}=-\frac{gR^{2}x}{(x^{2}+y^{2}+x^{2})^{3/2}}}\\[4pt]{y'=y_{1}}&{y'_{1}=-\frac{gR^{2}y}{(x^{2}+y^{2}+x^{2})^{3/2}}}\\[4pt]{z'=z_{1}}&{z'_{1}=-\frac{gR^{2}z}{(x^{2}+y^{2}+z^{2})^{3/2}}}\end{array}\)


    This page titled 11.2: A.10.1- Section 10.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?