# 11.4: A.10.3- Section 10.3 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

2. $${\bf y'}=\left[\begin{array}{cc}{0}&{1}\\[4pt]{-\frac{P_{2}(x)}{P_{0}(x)}}&{-\frac{P_{1}(x)}{P_{0}(x)}}\end{array}\right]{\bf y}$$

3. $${\bf y'}=\left[\begin{array}{cccc}{0}&{1}&{\ldots }&{0}\\[4pt]{\vdots}&{\vdots}&{\ddots}&{\vdots}\\[4pt]{0}&{0}&{\ldots}&{1}\\[4pt]{-\frac{P_{n}(x)}{P_{0}(x)}}&{-\frac{P_{n-1}(x)}{P_{0}(x)}}&{\ldots}&{-\frac{P_{1}(x)}{P_{0}(x)}}\end{array}\right]{\bf y}$$

7.

b. $${\bf y}=\left[\begin{array}{c}{3e^{6t}-6e^{-2t}}\\[4pt]{3e^{6t}+6e^{-2t}}\end{array}\right]$$

c. $${\bf y}=\frac{1}{2}\left[\begin{array}{cc}{e^{6t}+e^{-2t}}&{e^{6t}-e^{-2t}}\\[4pt]{e^{6t}-e^{-2t}}&{e^{6t}+e^{-2t}}\end{array}\right]{\bf k}$$

8.

b. $${\bf y}=\left[\begin{array}{c}{6e^{-4t}+4e^{3t}}\\[4pt]{6e^{-4t}-10e^{3t}}\end{array}\right]$$

c. $${\bf y}=\frac{1}{7}\left[\begin{array}{cc}{5e^{-4t}+2e^{3t}}&{2e^{-4t}-2e^{3t}}\\[4pt]{5e^{-4t}-5e^{3t}}&{2e^{-4t}+5e^{3t}}\end{array}\right]{\bf k}$$

9.

b. $${\bf y}=\left[\begin{array}{c}{-15e^{2t}-4e^{t}}\\[4pt]{9e^{2t}+2e^{t}}\end{array}\right]$$

c. $${\bf y}=\left[\begin{array}{cc}{-5e^{2t}+6e^{t}}&{-10e^{2t}+10e^{t}}\\[4pt]{3e^{2t}-3e^{t}}&{6e^{2t}-5e^{t}}\end{array}\right]{\bf k}$$

10.

b. $${\bf y}=\left[\begin{array}{c}{5e^{3t}-3e^{t}}\\[4pt]{5e^{3t}+3e^{t}}\end{array}\right]$$

c. $${\bf y}=\frac{1}{2}\left[\begin{array}{cc}{e^{3t}+e^{t}}&{e^{3t}-e^{t}}\\[4pt]{e^{3t}-e^{t}}&{e^{3t}+e^{t}}\end{array}\right]{\bf k}$$

11.

b. $${\bf y}=\left[\begin{array}{c}{e^{2t}-2e^{3t}+3e^{-t}}\\[4pt]{2e^{3t}-9e^{-t}}\\[4pt]{e^{2t}-2e^{3t}+21e^{-t}}\end{array}\right]$$

c. $${\bf y}=\frac{1}{6}\left[\begin{array}{ccc}{4e^{2t}+3e^{3t}-e^{-t}}&{6e^{2t}-6e^{3t}}&{2e^{2t}-3e^{3t}+e^{-t}}\\[4pt]{-3e^{3t}+3e^{-t}}&{6e^{3t}}&{3e^{3t}-3e^{-t}}\\[4pt]{4e^{2t}+3e^{3t}-7e^{-t}}&{6e^{2t}-6e^{3t}}&{2e^{2t}-3e^{3t}+7e^{-t}}\end{array}\right]{\bf k}$$

12.

b. $${\bf y}=\frac{1}{3}\left[\begin{array}{c}{-e^{-2t}+e^{4t}}\\[4pt]{-10e^{-2t}+e^{4t}}\\[4pt]{11e^{-2t}+e^{4t}}\end{array}\right]$$

c. $${\bf y}=\frac{1}{3}\left[\begin{array}{ccc}{2e^{-2t}+e^{4t}}&{-e^{-2t}+e^{4t}}&{-e^{-2t}+e^{4t}}\\[4pt]{-e^{-2t}+e^{4t}}&{2e^{-2t}+e^{4t}}&{-e^{-2t}+e^{4t}}\\[4pt]{-e^{-2t}+e^{4t}}&{-e^{-2t}+e^{4t}}&{2e^{-2t}+e^{4t}}\end{array}\right]{\bf k}$$

13.

b. $${\bf y}=\left[\begin{array}{c}{3e^{t}+3e^{-t}-e^{-2t}}\\[4pt]{3e^{t}+2e^{-2t}}\\[4pt]{-e^{-2t}}\end{array}\right]$$

c. $${\bf y}=\left[\begin{array}{ccc}{e^{-t}}&{e^{t}-e^{-t}}&{2e^{t}-3e^{-t}+e^{-2t}}\\[4pt]{0}&{e^{t}}&{2e^{t}-2e^{-2t}}\\[4pt]{0}&{0}&{e^{-2}}\end{array}\right]{\bf k}$$

14. $$YZ^{-1}$$ and $$ZY^{-1}$$

This page titled 11.4: A.10.3- Section 10.3 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.