11.47: A.7.5- Section 7.5 Answers
- Last updated
- Dec 31, 2022
- Save as PDF
- Page ID
- 121445
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. y1=x1/2(1−15x−235x2+31315x3+…);y2=x−1(1+x+12x2−16x3+…)
2. y1=x1/3(1−23x+89x2−4081x3+…);y2=1−x+65x2−45x3+…
3. y1=x1/3(1−47x−745x2+9702457x3+…);y2=x−1(1−x2+23x3+…)
4. y1=x1/4(1−12x−19104x2+157110608x3+…);y2=x−1(1+2x−116x2−17x3+…)
5. y1=x1/3(1−x+2831x2−11111333x3+…);y2=x−1/4(1−x+78x2−1924x3+…)
6. y1=x1/5(1−625x−1217625x2+4197246875x3+…);y2=x−14x2−3518x3+1112x4+…
7. y1=x3/2(1−x+1126x2−1091326x3+…);y2=x1/4(1+4x−13124x2+3914x3+…)
8. y1=x1/3(1−13x+215x2−563x3+…);y2=x−1/6(1−112x2+118x3+…)
9. y1=1−114x2+1105x3+…;y2=x−1/3(1−118x−71405x2+71934992x3+…)
10. y1=x1/5(1+317x−7153x2−5475661x3+…);y2=x−1/2(1+x+1413x2−556897x3+…)
14. y1=x1/2∑∞n=0(−2)n∏nj=1(2j+3)xn;y2=x−1∑∞n=0(−1)nn!xn
15. y1=x1/3∑∞n=0(−1)n∏nj=1(3j+1)9nn!xn;x−1
16. y1=x1/2∑∞n=0(−1)n∏nj=1(3j+4)xn;y2=1x2∑∞n=02nn!∏nj=1(2j−5)xn
17. y1=x∑∞n=0(−1)n∏nj=1(3j+4)xn;y2=x−1/3∑∞n=0(−1)n3nn!xn
18. y1=x∑∞n=02nn!∏nj=1(2j+1)xn;y2=x1/2∑∞n=02nn!∏nj=1(2j−1)xn
19. y1=x1/3∑∞n=01n!∏nj=1(3j+2)xn;y2=x−1/3∑∞n=01n!∏nj=1(3j−2)xn
20. y1=x(1+27x+170x2);y2=x−1/3∑∞n=0(−1)n3nn!(∏nj=13j−133j−4)xn
21. y1=x1/2∑∞n=0(−1)n(∏nj=12j+16j+1)xn;y2=x1/3∑∞n=0(−1)n9nn!(∏nj=1(3j+1))xn
22. y1=x∑∞n=0(−1)n(n+2)!2∏nj=1(4j+3)xn;y2=x1/4∑∞n=0(−1)n16nn!∏nj=1(4j+5)xn
23. y1=x−1/2∑∞n=0(1)nn!∏nj=1(2j+1)xn;y2=x−1∑∞n=0(1)nn!∏nj=1(2j−1)xn
24. y1=x1/3∑∞n=0(−1)nn!(29)n(∏nj=1(6j+5))xn;y2=x−1∑∞n=0(−1)n2n(∏nj=12j−13j−4)xn
25. y1=4x1/3∑∞n=016nn!(3n+4)xn;x−1
28. y1=x1/2(1−940x+5128x2−24539936x3+…);y2=x1/4(1−2596x+67514336x2−380255046272x3+…)
29. y1=x1/3(1+32117x−281053x2+4480540189x3+…);y2=x−3(1+327x+487x2)
30.y1=x1/2(1−58x+5596x2−9351536x3+…);y2=x−1/2(1+14x−532x2−55384x3+…)
31. y1=x1/2(1−34x+596x2+54224x3+…);y2=x−2(1+8x+60x2−160x3+…)
32. y1=x−1/3(1−1063x+2007371x2−176003781323x3+…);y2=x−1/2(1−320x+9352x2−10523936x3+…)
33. y1=x1/2∑∞m=0(−1)m8mm!(∏mj=14j−38j+1)x2m;y2=x1/4∑∞m=0(−1)m16mm!(∏mj=18j−78j−1)x2m
34. y1=x1/2∑∞m=0(∏mj=18j−38j+1)x2m;y2=x1/4∑∞m=012mm!(∏mj=1(2j−1))x2m
35. y1=x4∑∞m=0(−1)m(m+1)x2m;y2=−x∑∞m=0(−1)m(2m−1)x2m
36. y1=x1/3∑∞m=0(−1)m18mm!(∏mj=1(6j−17))x2m;y2=1+45x2+855x4
37. y1=x1/4∑∞m=0(∏mj=18j+18j+5)x2m;y2=x−1∑∞m=0∏mj=1(2j−1)2mm!x2m
38. y1=x1/2∑∞m=018mm!(∏mj=1(4j−1))x2m;y2=x1/3∑∞m=02m(∏mj=13j−112j−1)x2m
39. y1=x7/2∑∞m=0(−1)m∏mj=1(4j+5)8mm!x2m;y2=x1/2∑∞m=0(−1)m4m(∏mj=14j−12j−3)x2m
40. y1=x1/2∑∞m=0(−1)m4m(∏mj=14j−12j+1)x2m;y2=x−1/2∑∞m=0(−1)m8mm!(∏mj=1(4j−3))x2m
41. y1=x1/2∑∞m=0(−1)mm!(∏mj=1(2j+1))x2m;y2=1x2∑∞m=0(−2)m(∏mj=14j−34j−5)x2m
42. y1=x1/3∑∞m=0(−1)m(∏mj=13j−43j+2)x2m;y2=x−1(1+x2)
43. y1=∑∞m=0(−1)m2m(m+1)!∏mj=1(2j+3)x2m;y2=1x3∑∞m=0(−1)m∏mj=1(2j−1)2mm!x2m
44. y1=x1/2∑∞m=0(−1)m8mm!(∏mj=1(4j−3)24j+3)x2m;y2=x−1∑∞m=0(−1)m2mm!(∏mj=1(2j−3)24j−3)x2m
45. y1=x∑∞m=0(−2)m(∏mj=12j+14j+5)x2m;y2=x−3/2∑∞m=0(−1)m4mm!(∏mj=1(4j−3))x2m
46. y1=x1/3∑∞m=0(−1)m2m∏mj=1(3j+1)x2m;y2=x−1/3∑∞m=0(−1)m6mm!x2m
47. y1=x1/2(1−613x2+36325x4−21612025x6+…);y2=x1/3(1−12x2+18x4−148x6+…)
48. y1=x1/4(1−1364x2+2738192x4−2639524288x6+…);y2=x−1(1−13x2+233x4−2209x6+…)
49. y1=x1/3(1−34x2+914x4−81140x6+…);y2=x−1/3(1−23x2+59x4−4081x6+…)
50. y1=x1/2(1−32x2+158x4−3516x6+…);y2=x−1/2(1−2x2+83x4−165x6+…)
51. y1=x1/4(1−x2+32x4−52x6+…);y2=x−1/2(1−25x2+3665x4−408455x6+…)
53. (a) y1=xv∑∞m=0(−1)m4mm!∏mj=1(j+v)x2m;y2=x−v∑∞m=0(−1)m4mm!∏mj=1(j−v)x2my1=sinx√x;y2=cosx√x
61. y1=x1/21+x;y2=x1+x
62. y1=x1/31+2x2;y2=x1/21+2x2
63. y1=x1/41−3x;y2=x21−3x
64. y1=x1/35+x;y2=x−1/35+x
65. y1=x1/42−x2;y2=x−1/22−x2
66. y1=x1/21+3x+x2;y2=x3/21+3x+x2
67. y1=x(1+x)2;y2=x1/3(1+x)2
68. y1=x3+2x+x2;y2=x1/43+2x+x2