Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

11.49: A.7.7- Section 7.7 Answers

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. y1=2x3n=0(4)nn!(n+2)!xn;y2=x+4x28(y1lnx4n=1(4)nn!(n+2)!(nj=1j+1j(j+2))xn)

2. y1=xn=0(1)nn!(n+1)!xn;y2=1y1lnx+xn=1(1)nn!(n+1)!(nj=12j+1j(j+1))xn

3. y1=x1/2;y2=x1/2+y1lnx+x1/2n=1(1)nnxn

4. y1=xn=0(1)nn!xn=xex;y2=1y1lnx+xn=1(1)nn!(j=1n1j)xn

5. y1=x1/2n=0(34)nnj=1(2j+1)n!xn;y2=x1/234(y1lnxx1/2n=1(34)nnj=1(2j+1)n!(nj=11j(2j+1))xn)

6. y1=xn=0(1)nn!xn=xex;y2=x2(1+12x+12x2)12(y1lnxxn=1(1)nn!(nj=11j)xn)

7. y1=6x3/2n=0(1)n4nn!(n+3)!xn;y2=x3/2(1+18x+164x2)1768(y1lnx6x3/2n=1(1)n4nn!(n+3)!(nj=12j+3j(j+3))xn)

8. y1=120x2n=0(1)nn!(n+5)!xn;y2=x7(1+14x+124x2+1144x3+1576x4)12880(y1lnx120x2n=1(1)nn!(n+f)!(nj=12j+5j(j+5))xn)

9. y1=x1/26n=0(1)n(n+1)(n+2)(n+3)xn;y2=x5/2(1+12x+x2)3y1lnx+32x1/2n=1(1)n(n+1)(n+2)(n+3)(nj=11j(j+3))xn

10. y1=x4(125x);y2=1+10x+50x2+200x3300(y1lnx+2725x5130x6)

11. y1=x3;y2=x3(165x+34x213x3+18x4120x5)1120(y1lnx+x3n=1(1)n6!n(n+6)!xn)

12. y1=x2n=01n!(nj=12j+3j+4)xn;y2=x2(1+x+14x2112x3)116y1lnx+x28n=11n!(nj=12j+3j+4)(nj=1(j2+3j+6)j(j+4)(2j+3))xn

13. y1=x5n=0(1)n(n+1)(n+2)xn;y2=1x2+x26

14. y1=1xn=0(1)nn!(nj=1(j+3)(2j3)j+6)xn;y2=x7(1+265x+14320x2)

15. y1=x7/2n=0(1)n2n(n+4)!xn;y2=x1/2(112x+18x2148x3)

16. y1=x10/3n=0(1)n(n+1)9n(nj=13j+7j+4)xn;y2=x2/3(1+427x1243x2)

17. y1=x37n=0(1)n(n+1)(nj=1j8j+6)xn;y2=x3(1+525x+2345x2+5725x3+143x4)

18. y1=x3n=0(1)nn!(nj=1(j+3)2j+5)xn;y2=x2(1+14x)

19. y1=x64n=0(1)n2n(nj=1j5j+5)xn;y2=x(1+18x+144x2+672x3+2016x4)

20. y1=x6(1+23x+17x2);y2=x(1+214x+212x2+354x3)

21. y1=x7/2n=0(1)n(n+1)xn;y2=x7/2(156x+23x212x3+13x416x5)

22. y1=x106n=0(1)n2n(n+1)(n+2)(n+3)xn;y2=(143x+53x24021x3+4021x43221x5+1621x6)

23. y1=x6m=0(1)mmj=1(2j+5)2mm!x2m;y2=x2(1+32x2)152y1lnx+752x6m=1(1)mmj=1(2j+5)2m+1m!(mj=11j(2j+5))x2m

24. y1=x6m=0(1)m2mm!x2m=x6ex2;y2=x2(1+12x2)12y1lnx+x64m=1(1)m2mm!(mj=11j)x2m

25. y1=6x6m=0(1)m4mm!(m+3)!x2m;y2=1+18x2+164x41384(y1lnx3x6m=1(1(m4mm!(m+3)!(mj=12j+3j(j+3))x2m)

26. y1=x2m=0(1)m(m+2)m!x2m;y2=x14y1lnxm=1(1)m(m+2)m!(mj=1j2+4j+2j(j+1)(j+2))x2m

27. y1=2x3m=0(1)m4mm!(m+2)!x2m;y2=x1(1+14x2)116(y1lnx2x3m=1(1)m4mm!(m+2)!(mj=1j+1j(j+2))x2m)

28. y1=x1/2m=0(1)mmj=1(2j1)8mm!(m+1)!x2m;y2=x5/2+14y1lnxx1/2m=1(1)mmj=1(2j1)8m+1m!(m+1)!(mj=12j22j1j(j+1)(2j1))x2m

29. y1=xm=0(1)m2mm!x2m=xex2/2;y2=x1y1lnx+x2m=1(1)m2mm!(mj=11j)x2m

30. y1=x2m=01m!x2m=x2ex2;y2=x2(1x2)2y1lnx+x2m=11m!(mj=11j)x2m

31. y1=6x5/2m=0(1)m16mm!(m+3)!x2m;y2=x7/2(1+132x2+11024x4)124576(y1lnx3x5/2m=1(1)m16mm!(m+3)!(mj=12j+3j(j+3))x2m)

32. y1=2x13/3m=0mj=1(3j+1)9mm!(m+2)!x2m;y2=x1/3(1+29x2)+281(y1lnxx13/3m=0mj=1(3j+1)9mm!(m+2)!(mj=13j2+2j+2j(j+2)(3j+1))x2m)

33. y1=x2;y2=x2(1+2x2)2(y1lnx+x2m=11m(m+2)!x2m)

34. y1=x2(112x2);y2=x2(1+92x2)272(y1lnx+712x4x2m=2(32)mm(m1)(m+2)!x2m)

35. y1=m=0(1)m(m+1)x2m;y2=x4

36. y1=x5/2m=0(1)m(m+1)(m+2)(m+3)x2m;y2=x7/2(1+x2)2

37. y1=x75m=0(1)m(m+5)x2m;y2=x1(12x2+3x44x6)

38. y1=x3m=0(1)mm+12m(mj=12j+1j+5)x2m;y2=x7(1+218x2+3516x4+3564x6)

39. y1=2x4m=0(1)mmj=1(4j+5)2m(m+2)!x2m;y2=112x2

40. y1=x3/2m=0(1)mmj=1(2j1)2m1(m+2)!x2m;y2=x5/2(1+32x2)

42. y1=xvm=0(1)m4mm!mj=1(j+v)x2m;y2=xvv1m=0(1)m4mm!mj=1(jv)x2m24vv!(v1)!(y1lnxxv2m=1(1)m4mm!mj=1(j+v)(mj=12j+vj(j+v))x2m)


This page titled 11.49: A.7.7- Section 7.7 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?