11.49: A.7.7- Section 7.7 Answers
- Last updated
- Dec 31, 2022
- Save as PDF
- Page ID
- 121447
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. y1=2x3∑∞n=0(−4)nn!(n+2)!xn;y2=x+4x2−8(y1lnx−4∑∞n=1(−4)nn!(n+2)!(∑nj=1j+1j(j+2))xn)
2. y1=x∑∞n=0(−1)nn!(n+1)!xn;y2=1−y1lnx+x∑∞n=1(−1)nn!(n+1)!(∑nj=12j+1j(j+1))xn
3. y1=x1/2;y2=x−1/2+y1lnx+x1/2∑∞n=1(−1)nnxn
4. y1=x∑∞n=0(−1)nn!xn=xe−x;y2=1−y1lnx+x∑∞n=1(−1)nn!(∑j=1n1j)xn
5. y1=x1/2∑∞n=0(−34)n∏nj=1(2j+1)n!xn;y2=x−1/2−34(y1lnx−x1/2∑∞n=1(−34)n∏nj=1(2j+1)n!(∑nj=11j(2j+1))xn)
6. y1=x∑∞n=0(−1)nn!xn=xe−x;y2=x−2(1+12x+12x2)−12(y1lnx−x∑∞n=1(−1)nn!(∑nj=11j)xn)
7. y1=6x3/2∑∞n=0(−1)n4nn!(n+3)!xn;y2=x−3/2(1+18x+164x2)−1768(y1lnx−6x3/2∑∞n=1(−1)n4nn!(n+3)!(∑nj=12j+3j(j+3))xn)
8. y1=120x2∑∞n=0(−1)nn!(n+5)!xn;y2=x−7(1+14x+124x2+1144x3+1576x4)−12880(y1lnx−120x2∑∞n=1(−1)nn!(n+f)!(∑nj=12j+5j(j+5))xn)
9. y1=x1/26∑∞n=0(−1)n(n+1)(n+2)(n+3)xn;y2=x−5/2(1+12x+x2)−3y1lnx+32x1/2∑∞n=1(−1)n(n+1)(n+2)(n+3)(∑nj=11j(j+3))xn
10. y1=x4(1−25x);y2=1+10x+50x2+200x3−300(y1lnx+2725x5−130x6)
11. y1=x3;y2=x−3(1−65x+34x2−13x3+18x4−120x5)−1120(y1lnx+x3∑∞n=1(−1)n6!n(n+6)!xn)
12. y1=x2∑∞n=01n!(∏nj=12j+3j+4)xn;y2=x−2(1+x+14x2−112x3)−116y1lnx+x28∑∞n=11n!(∏nj=12j+3j+4)(∑nj=1(j2+3j+6)j(j+4)(2j+3))xn
13. y1=x5∑∞n=0(−1)n(n+1)(n+2)xn;y2=1−x2+x26
14. y1=1x∑∞n=0(−1)nn!(∏nj=1(j+3)(2j−3)j+6)xn;y2=x−7(1+265x+14320x2)
15. y1=x7/2∑∞n=0(−1)n2n(n+4)!xn;y2=x−1/2(1−12x+18x2−148x3)
16. y1=x10/3∑∞n=0(−1)n(n+1)9n(∏nj=13j+7j+4)xn;y2=x−2/3(1+427x−1243x2)
17. y1=x3∑7n=0(−1)n(n+1)(∏nj=1j−8j+6)xn;y2=x−3(1+525x+2345x2+5725x3+143x4)
18. y1=x3∑∞n=0(−1)nn!(∏nj=1(j+3)2j+5)xn;y2=x−2(1+14x)
19. y1=x6∑4n=0(−1)n2n(∏nj=1j−5j+5)xn;y2=x(1+18x+144x2+672x3+2016x4)
20. y1=x6(1+23x+17x2);y2=x(1+214x+212x2+354x3)
21. y1=x7/2∑∞n=0(−1)n(n+1)xn;y2=x−7/2(1−56x+23x2−12x3+13x4−16x5)
22. y1=x106∑∞n=0(−1)n2n(n+1)(n+2)(n+3)xn;y2=(1−43x+53x2−4021x3+4021x4−3221x5+1621x6)
23. y1=x6∑∞m=0(−1)m∏mj=1(2j+5)2mm!x2m;y2=x2(1+32x2)−152y1lnx+752x6∑∞m=1(−1)m∏mj=1(2j+5)2m+1m!(∑mj=11j(2j+5))x2m
24. y1=x6∑∞m=0(−1)m2mm!x2m=x6e−x2;y2=x2(1+12x2)−12y1lnx+x64∑∞m=1(−1)m2mm!(∑mj=11j)x2m
25. y1=6x6∑∞m=0(−1)m4mm!(m+3)!x2m;y2=1+18x2+164x4−1384(y1lnx−3x6∑∞m=1(−1(m4mm!(m+3)!(∑mj=12j+3j(j+3))x2m)
26. y1=x2∑∞m=0(−1)m(m+2)m!x2m;y2=x−1−4y1lnx∑∞m=1(−1)m(m+2)m!(∑mj=1j2+4j+2j(j+1)(j+2))x2m
27. y1=2x3∑∞m=0(−1)m4mm!(m+2)!x2m;y2=x−1(1+14x2)−116(y1lnx−2x3∑∞m=1(−1)m4mm!(m+2)!(∑mj=1j+1j(j+2))x2m)
28. y1=x−1/2∑∞m=0(−1)m∏mj=1(2j−1)8mm!(m+1)!x2m;y2=x−5/2+14y1lnx−x−1/2∑∞m=1(−1)m∏mj=1(2j−1)8m+1m!(m+1)!(∑mj=12j2−2j−1j(j+1)(2j−1))x2m
29. y1=x∑∞m=0(−1)m2mm!x2m=xe−x2/2;y2=x−1−y1lnx+x2∑∞m=1(−1)m2mm!(∑mj=11j)x2m
30. y1=x2∑∞m=01m!x2m=x2ex2;y2=x−2(1−x2)−2y1lnx+x2∑∞m=11m!(∑mj=11j)x2m
31. y1=6x5/2∑∞m=0(−1)m16mm!(m+3)!x2m;y2=x−7/2(1+132x2+11024x4)−124576(y1lnx−3x5/2∑∞m=1(−1)m16mm!(m+3)!(∑mj=12j+3j(j+3))x2m)
32. y1=2x13/3∑∞m=0∏mj=1(3j+1)9mm!(m+2)!x2m;y2=x1/3(1+29x2)+281(y1lnx−x13/3∑∞m=0∏mj=1(3j+1)9mm!(m+2)!(∑mj=13j2+2j+2j(j+2)(3j+1))x2m)
33. y1=x2;y2=x−2(1+2x2)−2(y1lnx+x2∑∞m=11m(m+2)!x2m)
34. y1=x2(1−12x2);y2=x−2(1+92x2)−272(y1lnx+712x4−x2∑∞m=2(32)mm(m−1)(m+2)!x2m)
35. y1=∑∞m=0(−1)m(m+1)x2m;y2=x−4
36. y1=x5/2∑∞m=0(−1)m(m+1)(m+2)(m+3)x2m;y2=x−7/2(1+x2)2
37. y1=x75∑∞m=0(−1)m(m+5)x2m;y2=x−1(1−2x2+3x4−4x6)
38. y1=x3∑∞m=0(−1)mm+12m(∏mj=12j+1j+5)x2m;y2=x−7(1+218x2+3516x4+3564x6)
39. y1=2x4∑∞m=0(−1)m∏mj=1(4j+5)2m(m+2)!x2m;y2=1−12x2
40. y1=x3/2∑∞m=0(−1)m∏mj=1(2j−1)2m−1(m+2)!x2m;y2=x−5/2(1+32x2)
42. y1=xv∑∞m=0(−1)m4mm!∏mj=1(j+v)x2m;y2=x−v∑v−1m=0(−1)m4mm!∏mj=1(j−v)x2m−24vv!(v−1)!(y1lnx−xv2∑∞m=1(−1)m4mm!∏mj=1(j+v)(∑mj=12j+vj(j+v))x2m)