# 11.55: A.8.6- Section 8.6 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1.

1. $$\frac{1}{2}\int_{0}^{t}\tau\sin 2(t-\tau )d\tau$$
2. $$\int_{0}^{t}e^{-2\tau }\cos 3(t-\tau )d\tau$$
3. $$\frac{1}{2}\int_{0}^{t}\sin 2\tau\cos 3(t-\tau )d\tau$$ or $$\frac{1}{3}\int_{0}^{t}\sin 3\tau\cos 2(t-\tau )d\tau$$
4. $$\int_{0}^{t}\cos\tau\sin (t-\tau )d\tau$$
5. $$\int_{0}^{t}e^{a\tau }d\tau$$
6. $$e^{-t}\int_{0}^{t}\sin (t-\tau )d\tau$$
7. $$e^{-2t}\int_{0}^{t}\tau e^{\tau }\sin (t-\tau )d\tau$$
8. $$\frac{e^{-2t}}{2}\int_{0}^{t}\tau ^{2}(t-\tau )e^{3\tau }d\tau$$
9. $$\int_{0}^{t}(t-\tau )e^{\tau }\cos\tau d\tau$$
10. $$\int_{0}^{t}e^{-3\tau }\cos\tau\cos 2(t-\tau )d\tau$$
11. $$\frac{1}{4!5!}\int_{0}^{t}\tau ^{4}(t-\tau )^{5}e^{3\tau }d\tau$$
12. $$\frac{1}{4}\int_{0}^{t}\tau ^{2}e^{\tau }\sin 2(t-\tau )d\tau$$
13. $$\frac{1}{2}\int_{0}^{t}\tau (t-\tau )^{2}e^{2(t-\tau )}d\tau$$
14. $$\frac{1}{5!6!}\int_{0}^{t}(t-\tau )^{5}e^{2(t-\tau )}\tau ^{6}d\tau$$

2.

1. $$\frac{as}{(s^{2}+a^{2})(s^{2}+b^{2})}$$
2. $$\frac{a}{(s-1)(s^{2}+a^{2})}$$
3. $$\frac{as}{(s^{2}-a^{2})^{2}}$$
4. $$\frac{2\omega s(s^{2}-\omega ^{2})}{(s^{2}+\omega ^{2})^{4}}$$
5. $$\frac{(s-1)\omega }{((s-1)^{2}+\omega ^{2})^{2}}$$
6. $$\frac{2}{(s-2)^{3}(s-1)^{2}}$$
7. $$\frac{s+1}{(s+2)^{2}\left[(s+1)^{2}+\omega ^{2}\right]}$$
8. $$\frac{1}{(s-3)((s-1)^{2}-1)}$$
9. $$\frac{2}{(s-2)^{2}(s^{2}+4)}$$
10. $$\frac{6}{s^{4}(s-1)}$$
11. $$\frac{3\cdot 6!}{s^{7}\left[(s+1)^{2}+9\right]}$$
12. $$\frac{12}{s^{7}}$$
13. $$\frac{2\cdot 7!}{s^{8}\left[ (s+1)^{2}+4\right]}$$
14. $$\frac{48}{s^{5}(s^{2}+4)}$$

3.

1. $$y=\frac{2}{\sqrt{5}}\int_{0}^{t}f(t-\tau )e^{-3\tau /2}\sinh\frac{\sqrt{5}\tau }{2}d\tau$$
2. $$y=\frac{1}{2}\int_{0}^{t}f(t-\tau )\sin 2\tau d\tau$$
3. $$y=\int_{0}^{t}\tau e^{-\tau }f(t-\tau )d\tau$$
4. $$y(t)=-\frac{1}{k}\sin kt+\cos kt+\frac{1}{k}\int_{0}^{t} f(t-\tau )\sin k\tau d\tau$$
5. $$y=-2te^{-3t}+\int_{0}^{t}\tau e^{-3\tau }f(t-\tau )d\tau$$
6. $$y=\frac{3}{2}\sinh 2t+\frac{1}{2}\int _{0}^{t} f(t-\tau )\sinh 2\tau d\tau$$
7. $$y=e^{3t}+\int_{0}^{t}(e^{3\tau }-e^{2\tau })f(t-\tau )d\tau$$
8. $$y=\frac{k_{1}}{\omega }\sin\omega t+k_{0}\cos\omega t+\frac{1}{\omega}\int_{0}^{t}f(t-\tau )\sin\omega\tau d\tau$$

4.

1. $$y=\sin t$$
2. $$y=te^{-t}$$
3. $$y=1+2te^{t}$$
4. $$y=t+\frac{t^{2}}{2}$$
5. $$y=4+\frac{5}{2}t^{2}+\frac{1}{24}t^{4}$$
6. $$y=1-t$$

5.

1. $$\frac{7!8!}{16!}t^{16}$$
2. $$\frac{13!7!}{21!}t^{21}$$
3. $$\frac{6!7!}{14!}t^{14}$$
4. $$\frac{1}{2}(e^{-t}+\sin t-\cos t)$$
5. $$\frac{1}{3}(\cos t-\cos 2t)$$

This page titled 11.55: A.8.6- Section 8.6 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.