# 11.58: A.9.2- Section 9.2 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. $$y=e^{x}(c_{1}+c_{2}x+c_{3}x^{2})$$

2. $$y=c_{1}e^{x}+c_{2}e^{-x}+c_{3}\cos 3x+c_{4}\sin 3x$$

3. $$y = c_{1}e^{x} + c_{2} \cos 4x + c_{3} \sin 4x$$

4. $$y = c_{1}e^{x} + c_{2}e^{−x} + c_{3}e^{−3x/2}$$

5. $$y = c_{1}e^{−x} + e^{−2x} (c_{1} \cos x + c_{2} \sin x)$$

6. $$y = c_{1}e^{x} + e^{x/2} (c_{2} + c_{3}x)$$

7. $$y = e ^{-x/3} (c_{1} + c_{2}x + c_{3}x^{2} )$$

8. $$y = c_{1} + c_{2}x + c_{3} \cos x + c_{4} \sin x$$

9. $$y = c_{1}e^{2x} + c_{2}e^{−2x} + c_{3} \cos 2x + c_{4} \sin 2x$$

10. $$y = (c_{1} + c_{2}x) \cos \sqrt{6}x + (c_{3} + c_{4}x) \sin\sqrt{6}x$$

11. $$y = e^{3x/2} (c_{1} + c_{2}x) + e^{−3x/2} (c_{3} + c_{4}x)$$

12. $$y = c_{1}e^{−x/2} + c_{2}e^{−x/3} + c_{3} \cos x + c_{4} \sin x$$

13. $$y = c_{1}e^{x}+c_{2}e^{−2x}+c_{3}e^{−x/2}+c_{4}e^{−3x/2}$$

14. $$y = e^{x} (c_{1}+c_{2}x+c_{3} \cos x+c_{4} \sin x)$$

15. $$y = \cos 2x − 2 \sin 2x + e^{2x}$$

16. $$y = 2e^{x} + 3e^{−x} − 5e^{−3x}$$

17. $$y = 2e^{x} + 3xe^{x} − 4e^{−x}$$

18. $$y = 2e^{−x} \cos x − 3e^{−x} \sin x + 4e^{2x}$$

19. $$y = \frac{9}{5} e^{−5x/3} + e^{x} (1 + 2x)$$

20. $$y = e^{2x} (1 − 3x + 2x^{2} )$$

21. $$y = e^{3x} (2 − x) + 4e^{−x/2}$$

22. $$y = e^{x/2} (1 − 2x) + 3e^{−x/2}$$

23. $$y = \frac{1}{8} (5e^{2x} + e^{−2x} + 10 \cos 2x + 4 \sin 2x)$$

24. $$y = −4e^{x} + e^{2x} − e^{4x} + 2e^{−x}$$

25. $$y=2e^{x}-e^{-x}$$

26. $$y = e^{2x} + e^{−2x} + e^{−x} (3 \cos x + \sin x)$$

27. $$y = 2e^{−x/2} + \cos 2x − \sin 2x$$

28.

1. $$\{e^{x},xe^{x},e^{2x}\}\:\:1$$
2. $$\{\cos 2x, \sin 2x, e^{3x} \}\: :\: 26$$
3. $$\{e ^{−x} \cos x, e^{−x} \sin x, e^{x} \}\: :\: 5$$
4. $$\{1, x, x^{2}, e^{x} \}\: 2e^{x}$$
5. $$\{e^{x}, e^{−x}, \cos x, \sin x \}\:8$$
6. $$\{\cos x, \sin x, e^{x} \cos x, e^{x} \sin x\}\: :\: 5$$

29. $$\{e^{−3x} \cos 2x, e^{−3x} \sin 2x, e^{2x}, xe^{2x}, 1, x, x^{2} \}$$

30. $$\{e^{x}, xe^{x}, e^{x/2}, xe^{x/2}, x^{2} e^{x/2}, \cos x, \sin x \}$$

31. $$\{\cos 3x, x \cos 3x, x^{2} \cos 3x, \sin 3x, x \sin 3x, x^{2} \sin 3x, 1, x \}$$

32. $$\{e^{2x}, xe^{2x}, x^{2} e^{2x}, e^{−x}, xe^{−x}, 1 \}$$

33. $$\{\cos x, \sin x, \cos 3x, x \cos 3x, \sin 3x, x \sin 3x, e^{2x} \}$$

34. $$\{e^{2x}, xe^{2x}, e^{−2x}, xe^{−2x}, \cos 2x, x \cos 2x, \sin 2x, x \sin 2x \}$$

35. $$\{e^{−x/2} \cos 2x, xe^{−x/2} \cos 2x, x^{2} e^{−x/2} \cos 2x, e^{−x/2} \sin 2x, xe^{−x/2} \sin 2x, x^{2} e^{−x/2} \sin 2x \}$$

36. $$\{1, x, x^{2}, e^{2x}, xe^{2x}, \cos 2x, x \cos 2x, \sin 2x, x \sin 2x \}$$

37. $$\{\cos (x/2), x \cos (x/2), \sin (x/2), x \sin (x/2), \cos 2x/3 x \cos (2x/3), x^{2} \cos (2x/3), \sin (2x/3), x \sin (2x/3), x^{2} \sin (2x/3) \}$$

38. $$\{e^{−x}, e^{3x}, e^{x} \cos 2x, e^{x} \sin 2x \}$$

39. b. $$e^{(a_{1}+a_{2}+\ldots +a_{n})x}\prod_{1\leq i<j\leq n}(a_{j}-a_{i})$$

43.

1. $$\{ e^{x},e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}$$
2. $$\{e^{-x},e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right),e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}$$
3. $$\{e^{2x}\cos 2x,e^{2x}\sin 2x, e^{-2x}\cos 2x,e^{-2x}\sin 2x\}$$
4. $$\{e^{x},e^{-x},e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}$$
5. $$\{\cos 2x,\sin 2x, e^{-\sqrt{3x}}\cos x, e^{-\sqrt{3x}}\sin x, e^{\sqrt{3x}}\cos x, e^{\sqrt{3x}}\sin x\}$$
6. $$\{1, e^{2x}, e^{3x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{3x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}$$
7. $$\{e^{-x}. e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x \right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}$$

45. $$y=c_{1}x^{r_{1}}+c_{2}x^{r_{2}}+c_{3}x^{r_{3}}\: (r_{1}, r_{2}, r_{3}\text{ distinct)};\: y=c_{1}x^{r_{1}}+(c_{2}+c_{3}\ln x)x^{r_{2}}\: (r_{1}, r_{2}\text{ distinct)};\: y=[c_{1}+c_{2}\ln x+c_{3}(\ln x)^{2}]x^{r_{1}};\: y=c_{1}x^{r_{1}}+x^{\lambda }[c_{2}\cos (\omega\ln x)+c_{3}\sin (\omega\ln x)]$$

This page titled 11.58: A.9.2- Section 9.2 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.