8.6.1: Convolution (Exercises)
- Last updated
- Jan 7, 2020
- Save as PDF
- Page ID
- 30773
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q8.6.1
1. Express the inverse transform as an integral.
- 1s2(s2+4)
- s(s+2)(s2+9)
- s(s2+4)(s2+9)
- s(s2+1)2
- 1s(s−a)
- 1(s+1)(s2+2s+2)
- 1(s+1)2(s2+4s+5)
- 1(s−1)3(s+2)2
- s−1s2(s2−2s+2)
- s(s+3)(s2+4)(s2+6s+10)
- 1(s−3)5s6
- 1(s−1)3(s2+4)
- 1s2(s−2)3
- 1s7(s−2)6
2. Find the Laplace transform.
- ∫t0sinaτcosb(t−τ)dτ
- ∫t0eτsina(t−τ)dτ
- ∫t0sinhaτcosha(t−τ)dτ
- ∫t0τ(t−τ)sinωτcosω(t−τ)dτ
- et∫t0sinωτcosω(t−τ)dτ
- et∫t0τ2(t−τ)eτdτ
- e−t∫t0e−ττcosω(t−τ)dτ
- et∫t0e2τsinh(t−τ)dτ
- ∫t0τe2τsin2(t−τ)dτ
- ∫t0(t−τ)3eτdτ
- ∫t0τ6e−(t−τ)sin3(t−τ)dτ
- ∫t0τ2(t−τ)3dτ
- ∫t0(t−τ)7e−τsin2τdτ
- ∫t0(t−τ)4sin2τdτ
3. Find a formula for the solution of the initial value problem.
- y″
- y''+4y=f(t),\quad y(0)=0,\quad y'(0)=0
- y''+2y'+y=f(t),\quad y(0)=0,\quad y'(0)=0
- y''+k^2y=f(t),\quad y(0)=1,\quad y'(0)=-1
- y''+6y'+9y=f(t),\quad y(0)=0,\quad y'(0)=-2
- y''-4y=f(t),\quad y(0)=0,\quad y'(0)=3
- y''-5y'+6y=f(t),\quad y(0)=1,\quad y'(0)=3
- y''+\omega^2y=f(t),\quad y(0)=k_0,\quad y'(0)=k_1
4. Solve the integral equation.
- \displaystyle y(t)=t-\int_0^t (t-\tau) y(\tau)\,d\tau
- \displaystyle y(t)=\sin t-2 \int_0^t\cos (t-\tau) y (\tau)\,d\tau
- \displaystyle y(t)=1+2 \int_0^ty(\tau)\cos(t-\tau)\,d\tau
- \displaystyle y(t)=t+\int_0^t y(\tau)e^{-(t-\tau)}\,d\tau
- \displaystyle y'(t)=t+\int_0^t y(\tau)\cos (t-\tau)\,d\tau,\, y(0)=4
- \displaystyle y(t)=\cos t-\sin t+ \int_0^t y(\tau)\sin (t-\tau)\,d\tau
5. Use the convolution theorem to evaluate the integral.
- \displaystyle \int_0^t (t-\tau)^7\tau^8\, d\tau
- \displaystyle \int_0^t(t-\tau)^{13}\tau^7\,d\tau
- \displaystyle \int_0^t(t-\tau)^6\tau^7\, d\tau
- \displaystyle \int_0^te^{-\tau}\sin(t-\tau)\,d\tau
- \displaystyle \int_0^t\sin\tau\cos2(t-\tau)\,d\tau
6. Show that \displaystyle \int_0^tf(t-\tau)g(\tau)\,d\tau=\int_0^tf(\tau)g(t-\tau)\,d\tau by introducing the new variable of integration x=t-\tau in the first integral.
7. Use the convolution theorem to show that if f(t)\leftrightarrow F(s) then \displaystyle \int_0^tf(\tau)\,d\tau\leftrightarrow \dfrac{F(s)}{ s}.
8. Show that if p(s)=as^2+bs+c has distinct real zeros r_1 and r_2 then the solution of
ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber
is
\begin{aligned} y(t)&=\; k_0\dfrac{r_2e^{r_1t}-r_1e^{r_2t}}{ r_2-r_1}+k_1\dfrac{e^{r_2t}-e^{r_1t} }{ r_2-r_1} \\[4pt] &+\dfrac{1}{ a(r_2-r_1)}\int_0^t(e^{r_2\tau}-e^{r_1\tau})f(t-\tau)\,d\tau.\end{aligned}\nonumber
9. Show that if p(s)=as^2+bs+c has a repeated real zero r_1 then the solution of
ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber
is
y(t)=\; k_0(1-r_1t)e^{r_1t}+k_1te^{r_1t} +\dfrac{1}{ a}\int_0^t\tau e^{r_1\tau}f(t-\tau)\,d\tau.\nonumber
10. Show that if p(s)=as^2+bs+c has complex conjugate zeros \lambda\pm i\omega then the solution of
ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber
is
\begin{aligned} y(t)&=\; e^{\lambda t}\left[k_0(\cos\omega t-\dfrac{\lambda}{\omega}\sin\omega t)+\dfrac{k_1}{\omega}\sin\omega t\right] \\[4pt] &+\dfrac{1}{ a\omega}\int_0^te^{\lambda t}f(t-\tau)\sin\omega\tau\, d\tau.\end{aligned}\nonumber
11. Let \displaystyle w={\cal L}^{-1}\left(\dfrac{1}{ as^2+bs+c}\right), where a,b, and c are constants and a\ne0.
- Show that w is the solution of aw''+bw'+cw=0,\quad w(0)=0,\quad w'(0)=\dfrac{1}{ a}.\nonumber
- Let f be continuous on [0,\infty) and define h(t)=\int_0^t w(t-\tau)f(\tau)\,d\tau.\nonumber Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that h is the solution of ah''+bh'+ch=f,\quad h(0)=0,\quad h'(0)=0.\nonumber
- Show that the function y in Equation 8.6.14 is the solution of Equation 8.6.13 provided that f is continuous on [0,\infty); thus, it is not necessary to assume that f has a Laplace transform.
12. Consider the initial value problem
ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0, \tag{A}
where a,b, and c are constants, a\ne0, and
f(t)=\left\{\begin{array}{cc}f_0(t),&0\le t<t_1,\\[4pt] f_1(t),&t\ge t_1.\end{array}\right.\nonumber
Assume that f_0 is continuous and of exponential order on [0,\infty) and f_1 is continuous and of exponential order on [t_1,\infty). Let
p(s)=as^2+bs+c.\nonumber
- Show that the Laplace transform of the solution of (A) is Y(s)=\dfrac{F_0(s)+e^{-st_1}G(s)}{ p(s)}\nonumber where g(t)=f_1(t+t_1)-f_0(t+t_1).
- Let w be as in Exercise 8.6.11. Use Theorem 8.4.2 and the convolution theorem to show that the solution of (A) is y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w(t-t_1-\tau)g(\tau)\,d\tau\nonumber for t>0.
- Henceforth, assume only that f_0 is continuous on [0,\infty) and f_1 is continuous on [t_1,\infty). Use Exercise 8.6.11 (a) and (b) to show that y'(t)=\int_0^t w'(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w'(t-t_1-\tau)g(\tau)\,d\tau\nonumber for t>0, and y''(t)=\dfrac{f(t)}{a}+\int_0^t w''(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w''(t-t_1-\tau)g(\tau)\,d\tau\nonumber for 0<t<t_{1} and t>t_{1}
. Also, show y satisfies the differential equation in (A) on(0,t_1) and (t_1,\infty). - Show that y and y' are continuous on [0,\infty).
13. Suppose
f(t)=\left\{\begin{array}{cl} f_0(t),&0\le t < t_1,\\[4pt] f_1(t),&t_1\le t < t_2,\\[4pt] &\vdots\\[4pt] f_{k-1}(t),&t_{k-1}\le t < t_k,\\[4pt] f_k(t),&t\ge t_k, \end{array}\right.\nonumber
where f_m is continuous on [t_m,\infty) for m=0,\dots,k (let t_0=0), and define
g_m(t)=f_m(t+t_m)-f_{m-1}(t+t_m) ,\, m=1,\dots,k.\nonumber
Extend the results of Exercise 8.6.12 to show that the solution of
ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0\nonumber
is
y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+\sum_{m=1}^ku(t-t_m) \int_0^{t-t_m}w(t-t_m-\tau)g_m(\tau)\,d\tau.\nonumber
14. Let \{t_m\}_{m=0}^\infty be a sequence of points such that t_0=0, t_{m+1}>t_m, and \lim_{m\to\infty}t_m=\infty. For each nonegative integer m let f_m be continuous on [t_m,\infty), and let f be defined on [0,\infty) by
f(t)=f_m(t),\quad t_m\le t<t_{m+1}\quad m=0,1,2,...\nonumber
Let
g_m(t)=f_m(t+t_m)-f_{m-1}(t+t_m),\quad m=1,\dots,k.\nonumber
Extend the results of Exercise 8.6.13 to show that the solution of
ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0\nonumber
is
y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+\sum_{m=1}^\infty u(t-t_m) \int_0^{t-t_m}w(t-t_m-\tau)g_m(\tau) \,d\tau.\nonumber HINT: See Excercise 8.6.30