Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.6.1: Convolution (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q8.6.1

1. Express the inverse transform as an integral.

  1. 1s2(s2+4)
  2. s(s+2)(s2+9)
  3. s(s2+4)(s2+9)
  4. s(s2+1)2
  5. 1s(sa)
  6. 1(s+1)(s2+2s+2)
  7. 1(s+1)2(s2+4s+5)
  8. 1(s1)3(s+2)2
  9. s1s2(s22s+2)
  10. s(s+3)(s2+4)(s2+6s+10)
  11. 1(s3)5s6
  12. 1(s1)3(s2+4)
  13. 1s2(s2)3
  14. 1s7(s2)6

2. Find the Laplace transform.

  1. t0sinaτcosb(tτ)dτ
  2. t0eτsina(tτ)dτ
  3. t0sinhaτcosha(tτ)dτ
  4. t0τ(tτ)sinωτcosω(tτ)dτ
  5. ett0sinωτcosω(tτ)dτ
  6. ett0τ2(tτ)eτdτ
  7. ett0eττcosω(tτ)dτ
  8. ett0e2τsinh(tτ)dτ
  9. t0τe2τsin2(tτ)dτ
  10. t0(tτ)3eτdτ
  11. t0τ6e(tτ)sin3(tτ)dτ
  12. t0τ2(tτ)3dτ
  13. t0(tτ)7eτsin2τdτ
  14. t0(tτ)4sin2τdτ

3. Find a formula for the solution of the initial value problem.

  1. y
  2. y''+4y=f(t),\quad y(0)=0,\quad y'(0)=0
  3. y''+2y'+y=f(t),\quad y(0)=0,\quad y'(0)=0
  4. y''+k^2y=f(t),\quad y(0)=1,\quad y'(0)=-1
  5. y''+6y'+9y=f(t),\quad y(0)=0,\quad y'(0)=-2
  6. y''-4y=f(t),\quad y(0)=0,\quad y'(0)=3
  7. y''-5y'+6y=f(t),\quad y(0)=1,\quad y'(0)=3
  8. y''+\omega^2y=f(t),\quad y(0)=k_0,\quad y'(0)=k_1

4. Solve the integral equation.

  1. \displaystyle y(t)=t-\int_0^t (t-\tau) y(\tau)\,d\tau
  2. \displaystyle y(t)=\sin t-2 \int_0^t\cos (t-\tau) y (\tau)\,d\tau
  3. \displaystyle y(t)=1+2 \int_0^ty(\tau)\cos(t-\tau)\,d\tau
  4. \displaystyle y(t)=t+\int_0^t y(\tau)e^{-(t-\tau)}\,d\tau
  5. \displaystyle y'(t)=t+\int_0^t y(\tau)\cos (t-\tau)\,d\tau,\, y(0)=4
  6. \displaystyle y(t)=\cos t-\sin t+ \int_0^t y(\tau)\sin (t-\tau)\,d\tau

5. Use the convolution theorem to evaluate the integral.

  1. \displaystyle \int_0^t (t-\tau)^7\tau^8\, d\tau
  2. \displaystyle \int_0^t(t-\tau)^{13}\tau^7\,d\tau
  3. \displaystyle \int_0^t(t-\tau)^6\tau^7\, d\tau
  4. \displaystyle \int_0^te^{-\tau}\sin(t-\tau)\,d\tau
  5. \displaystyle \int_0^t\sin\tau\cos2(t-\tau)\,d\tau

6. Show that \displaystyle \int_0^tf(t-\tau)g(\tau)\,d\tau=\int_0^tf(\tau)g(t-\tau)\,d\tau by introducing the new variable of integration x=t-\tau in the first integral.

7. Use the convolution theorem to show that if f(t)\leftrightarrow F(s) then \displaystyle \int_0^tf(\tau)\,d\tau\leftrightarrow \dfrac{F(s)}{ s}.

8. Show that if p(s)=as^2+bs+c has distinct real zeros r_1 and r_2 then the solution of

ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber

is

\begin{aligned} y(t)&=\; k_0\dfrac{r_2e^{r_1t}-r_1e^{r_2t}}{ r_2-r_1}+k_1\dfrac{e^{r_2t}-e^{r_1t} }{ r_2-r_1} \\[4pt] &+\dfrac{1}{ a(r_2-r_1)}\int_0^t(e^{r_2\tau}-e^{r_1\tau})f(t-\tau)\,d\tau.\end{aligned}\nonumber

9. Show that if p(s)=as^2+bs+c has a repeated real zero r_1 then the solution of

ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber

is

y(t)=\; k_0(1-r_1t)e^{r_1t}+k_1te^{r_1t} +\dfrac{1}{ a}\int_0^t\tau e^{r_1\tau}f(t-\tau)\,d\tau.\nonumber

10. Show that if p(s)=as^2+bs+c has complex conjugate zeros \lambda\pm i\omega then the solution of

ay''+by'+cy=f(t),\quad y(0)=k_0,\quad y'(0)=k_1\nonumber

is

\begin{aligned} y(t)&=\; e^{\lambda t}\left[k_0(\cos\omega t-\dfrac{\lambda}{\omega}\sin\omega t)+\dfrac{k_1}{\omega}\sin\omega t\right] \\[4pt] &+\dfrac{1}{ a\omega}\int_0^te^{\lambda t}f(t-\tau)\sin\omega\tau\, d\tau.\end{aligned}\nonumber

11. Let \displaystyle w={\cal L}^{-1}\left(\dfrac{1}{ as^2+bs+c}\right), where a,b, and c are constants and a\ne0.

  1. Show that w is the solution of aw''+bw'+cw=0,\quad w(0)=0,\quad w'(0)=\dfrac{1}{ a}.\nonumber
  2. Let f be continuous on [0,\infty) and define h(t)=\int_0^t w(t-\tau)f(\tau)\,d\tau.\nonumber Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that h is the solution of ah''+bh'+ch=f,\quad h(0)=0,\quad h'(0)=0.\nonumber
  3. Show that the function y in Equation 8.6.14 is the solution of Equation 8.6.13 provided that f is continuous on [0,\infty); thus, it is not necessary to assume that f has a Laplace transform.

12. Consider the initial value problem

ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0, \tag{A}

where a,b, and c are constants, a\ne0, and

f(t)=\left\{\begin{array}{cc}f_0(t),&0\le t<t_1,\\[4pt] f_1(t),&t\ge t_1.\end{array}\right.\nonumber

Assume that f_0 is continuous and of exponential order on [0,\infty) and f_1 is continuous and of exponential order on [t_1,\infty). Let

p(s)=as^2+bs+c.\nonumber

  1. Show that the Laplace transform of the solution of (A) is Y(s)=\dfrac{F_0(s)+e^{-st_1}G(s)}{ p(s)}\nonumber where g(t)=f_1(t+t_1)-f_0(t+t_1).
  2. Let w be as in Exercise 8.6.11. Use Theorem 8.4.2 and the convolution theorem to show that the solution of (A) is y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w(t-t_1-\tau)g(\tau)\,d\tau\nonumber for t>0.
  3. Henceforth, assume only that f_0 is continuous on [0,\infty) and f_1 is continuous on [t_1,\infty). Use Exercise 8.6.11 (a) and (b) to show that y'(t)=\int_0^t w'(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w'(t-t_1-\tau)g(\tau)\,d\tau\nonumber for t>0, and y''(t)=\dfrac{f(t)}{a}+\int_0^t w''(t-\tau)f_0(\tau)\,d\tau+u(t-t_1)\int_0^{t-t_1} w''(t-t_1-\tau)g(\tau)\,d\tau\nonumber for 0<t<t_{1} and t>t_{1}. Also, show y satisfies the differential equation in (A) on(0,t_1) and (t_1,\infty).
  4. Show that y and y' are continuous on [0,\infty).

13. Suppose

f(t)=\left\{\begin{array}{cl} f_0(t),&0\le t < t_1,\\[4pt] f_1(t),&t_1\le t < t_2,\\[4pt] &\vdots\\[4pt] f_{k-1}(t),&t_{k-1}\le t < t_k,\\[4pt] f_k(t),&t\ge t_k, \end{array}\right.\nonumber

where f_m is continuous on [t_m,\infty) for m=0,\dots,k (let t_0=0), and define

g_m(t)=f_m(t+t_m)-f_{m-1}(t+t_m) ,\, m=1,\dots,k.\nonumber

Extend the results of Exercise 8.6.12 to show that the solution of

ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0\nonumber

is

y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+\sum_{m=1}^ku(t-t_m) \int_0^{t-t_m}w(t-t_m-\tau)g_m(\tau)\,d\tau.\nonumber

14. Let \{t_m\}_{m=0}^\infty be a sequence of points such that t_0=0, t_{m+1}>t_m, and \lim_{m\to\infty}t_m=\infty. For each nonegative integer m let f_m be continuous on [t_m,\infty), and let f be defined on [0,\infty) by

f(t)=f_m(t),\quad t_m\le t<t_{m+1}\quad m=0,1,2,...\nonumber

Let

g_m(t)=f_m(t+t_m)-f_{m-1}(t+t_m),\quad m=1,\dots,k.\nonumber

Extend the results of Exercise 8.6.13 to show that the solution of

ay''+by'+cy=f(t),\quad y(0)=0,\quad y'(0)=0\nonumber

is

y(t)=\int_0^t w(t-\tau)f_0(\tau)\,d\tau+\sum_{m=1}^\infty u(t-t_m) \int_0^{t-t_m}w(t-t_m-\tau)g_m(\tau) \,d\tau.\nonumber HINT: See Excercise 8.6.30


This page titled 8.6.1: Convolution (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?