Skip to main content
Mathematics LibreTexts

0.2: Introduction to Proofs/Contradiction

  • Page ID
    10958
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section, we will explore different techniques of proving a mathematical statement "If \(p\) then \(q\)." (\(p \to q\)).

    Direct Proof

    In this technique, we shall assume \(p\) and show that \(q\) is true.

    Theorem \(\PageIndex{1}\)

    Let \(n\) be an integer. If \(n\) is even then \(n^2\) is even.

    Proof

    Assume that \(n\) is even. Then \(n=2m\) for some integer \(m \).

    Consider \(n^2=(2m)^2=4m^2=2(2m^2).\) Since \( m \) is an integer, \( (2m^2)\) is an integer.

    Thus \(n^2\) is even.

    Example \(\PageIndex{1}\)

    Show that for all integers \( n\), if \(n\) is odd then \(n^2\) is odd.

    Answer

    Assume that \(n\) is odd. Then \(n=2m+1\) for some integer \(m \).

    Consider \(n^2=(2m+1)^2=4m^2+4m+1=2(2m^2+2m)+1.\)

    Since \( m \) is an integer, \( (2m^2+2m)\) is an integer.

    Thus \(n^2\) is odd.

    Proof by Contrapositive

    In this technique, we shall assume \(\neg  p\) and show that \( \neg q\) is true.

    Theorem \(\PageIndex{2}\)

    Let \(n\) be an integer. If \(n^2\) is even then \(n\) is even.

    Proof

    We shall prove this statement by assuming \(n\) is odd. Then \(n=2m+1\) for some integer \(m \).

    Consider \(n^2=(2m+1)^2=4m^2+4m+1=2(2m^2+2m)+1.\)

    Since \( m \) is an integer, \( (2m^2)+2m\) is an integer.

    Thus \(n^2\) is odd.

    Example \(\PageIndex{2}\)

    Show that for all integers \( n\), if \(n^2\) is odd then \(n\) is odd.

    Answer

    We shall prove this statement by assuming \(n\) is even. Then \(n=2m\) for some integer \(m \).

    Consider \(n^2=(2m)^2=4m^2=2(2m^2).\)

    Since \( m \) is an integer, \( (2m^2)\) is an integer. Thus \(n^2\) is even.

    Proof by Contradiction

    In this technique, we shall assume the negation of the given statement is true and come to a contradiction.

    Theorem \(\PageIndex{3}\)

    \(\sqrt{2}\) is irrational.

    Proof

    Assume that \(\sqrt{2}\) is rational. Then \(\sqrt{2}= \dfrac {b}{a}\), where \(b\in \mathbb{Z}, a \in \mathbb{Z}\setminus \{0\}\), with no common factors between \(a\) and \(b\). Now, \( \sqrt{2} a=b\). Then \( 2a^2=b^2\). Since \(2\) divides \(2a^2\), \(2\) divides \(b^2\). Thus \(b^2\) is even. Therefore, \(b\) is even (by theorem 2). Since \( b\) is even, \(2 \) divides \(b\). Therefore, \(2^2 \) divides \(b^2\).

    Since \(2a^2=b^2\), \(2^2 \) divides \(2a^2\). Therefore, \(2 \) divides \(a^2\). Which implies \(a\) is even. This contradicts the fact that \(a\) and \(b\) have no common factors. Thus \(\sqrt{2}\) is irrational.

    Proof by Counterexample

    Example \(\PageIndex{3}\):

    Decide whether the statement is true or false and justify your answer:

    For all integers \(a,b,u,v\), and \(u\ne 0, v \ne 0\), if \(au+bv =0\) then \(a=b=0.\)

    Solution: The statement is false.

    Counterexample: Choose \(a=1,b=-1, u=2,v=2\), then \(au+bv =0\), but \(a\ne 0. b \ne 0, a \ne b.\)

    Proof by induction

    In mathematics, we use induction to prove mathematical statements involving integers. There are two types of induction: regular and strong. The steps start the same but vary at the end. Here are the steps. In mathematics, we start with a statement of our assumptions and intent:

    Let \(p(n) \forall n \geq n_0, \, n, \, n_0 \in \mathbb{Z}\) be a statement. We would show that p(n) is true for all possible values of n.

    1. Show that p(n) is true for the smallest possible value of n: In our case \(p(n_0)\). AND
    2. For Regular Induction: Assume that the statement is true for \(n = k,\) for some integer \(k \geq n_0\). Show that the statement is true for n = k + 1.

    OR

    For Strong Induction: Assume that the statement p(r) is true for all integers r, where \(n_0 ≤ r ≤ k \) for some \(k ≥ n_0\). Show that p(k+1) is true.

    If these steps are completed, and the statement holds, we are saying that, by mathematical induction, we can conclude that the statement is true for all values of \(n \geq n_0.\)

    Example \(\PageIndex{4}\):

    Prove that \(1 + 2 + ... + n = \displaystyle \frac{n(n + 1)}{2}, \, \forall n \in \mathbb{Z}\).

    Solution:

    Base step: Choose \(n = 1\). Then L.H.S =\(1\) and R.H.S \( = \frac{(1)(1 + 1)}{2}=1\)

    Induction Assumption: Assume that \( 1 + 2 + ... +k= \displaystyle\frac{k(k + 1)}{2}\), for \(k \in \mathbb{Z}\).

    We shall show that \(1 + 2 + ... + k + (k + 1) = \displaystyle\frac{(k + 1)[(k + 1) + 1]}{2} = \frac{(k + 1)(k + 2)}{2}\)

    Consider, \begin{align*}1 + 2 + ... + k + (k + 1) &= \displaystyle \frac{k(k + 1)}{2} + (k + 1)\\&= (k + 1) \left( \displaystyle\frac{k}{2} + \displaystyle\frac{1}{1}\right)\\&= (k + 1) \left( \displaystyle\frac{k + 2}{2}\right)\\&= \displaystyle \frac{(k + 1)(k + 2)}{2}.\end{align*}

    Thus, by induction we have \(1 + 2 + ... + n = \displaystyle\frac{n(n + 1)}{2}, \, \forall n \in \mathbb{Z}\).

    Example \(\PageIndex{5}\)

    Prove   for .

    Solution

    Let . Then is true, since clearly . Thus, the statement is true for .

    Assume that is true for some .

    We will show that .

    Consider .

    Since and , we have .

    Thus the statement is true for all .

    By induction, for all .◻


    This page titled 0.2: Introduction to Proofs/Contradiction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?