$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.E: Basic Concepts of Sets (Exercises)

• • Contributed by Pamini Thangarajah
• Professor (Mathematics & Computing) at Mount Royal University
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Exercise $$\PageIndex{1}$$: Set Operations

Let $$A = \{1, 5, 31, 56, 101\}$$, $$B = \{22, 56, 5, 103, 87\}$$, $$C = 41, 13, 7, 101, 48\}$$, and $$D = \{1, 3, 5, 7...\}$$

Give the sets resulting from:

1. $$A \cap B$$
2. $$C \cup A$$
3. $$C \cap D$$
4. $$(A \cup B) \cup (C \cup D)$$

1. $$A \cap B =\{ 5, 56 \}$$

2. $$C \cup A=\{1, 5, 7, 13, 31, 41, 48, 56, 101\}$$

3. $$C \cap D = \{ 7, 13, 41, 101\}$$

4. $$(A \cup B) \cup (C \cup D)$$

## Exercise $$\PageIndex{2}$$: True or False

1. $$7 \in \{6, 7, 8, 9\}$$
2. $$5 \notin \{6, 7, 8, 9\}$$
3. $$\{2\} \nsubseteq \{1, 2\}$$
4. $$\emptyset \nsubseteq \{\alpha, \beta, x\}$$
5. $$\emptyset = \{\emptyset\}$$

$$T, T, F, F, F$$

## Exercise $$\PageIndex{3}$$: Subsets

List all the subsets of:

1. $$\{1, 2, 3\}$$
2. $$\{\phi, \lambda, \Delta, \mu\}$$
3. $$\{\emptyset\}$$

1. $$\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{ 2, 3\}, \{1\}, \{2\}, \{ 3\}, \emptyset \}$$

3. $$\{\{\emptyset\},\emptyset \}$$

## Exercise $$\PageIndex{4}$$: Venn Diagram

A survey of 100 university students found the following data on their food preferences:

• 54 preferred Italian cuisine
• 29 preferred Asian-style cooking
• 16 preferred both Italian and Asian-style foods
• 19 preferred both Asian-style and Indian dishes
• 10 preferred both Italian and Indian cuisines
• 5 liked them all
• 11 did not like any of the options

How many students preferred:

1. Only Indian food?
2. Only Italian food?
3. Only one food?

## Exercise $$\PageIndex{5}$$: Symbols

Assume that the universal set is the set of all integers.
Let
$$A=\{-7,-5,-3,-1,1,3,5,7\}$$
$$B =\{ x \in {\bf Z}| x^2 <9 \}$$
$$C= \{2,3,4,5,6\}$$
$$D=\{x \in {\bf Z}| x \leq 9 \}$$

In each of the following fill in the blank with most appropriate symbol from $$\in, \notin, \subset, =,\neq,\subseteq$$, so that resulting statement is true.

A-----D
3-----B
9-----D

{2}-----$$C^c$$
$$\emptyset$$-----D
A-----C
B-----C
C-----D
0-----$$A \cap D$$
0-----$$A \cup D$$

## Exercise $$\PageIndex{6}$$: Prove or disprove

Given subsets $$A,B,C$$ of a universal set $$U$$, prove the statements that are true and give counter examples to disprove those that are false.

1. $$A-(B \cap C)=(A-B) \cup(A-C).$$
2. If $$A \cap B= A \cap C$$ then $$B= C$$.
3. If $$A \cup B= A \cup C$$ then $$B= C$$.
4. $$A-(B - C)=(A-B)-C.$$
5. If $$A \times B \subseteq C \times D$$ then $$A\subseteq C$$ and $$B \subseteq D.$$
6. If $$A\subseteq C$$ and $$B \subseteq D$$ then $$A \times B \subseteq C \times D.$$

## Exercise $$\PageIndex{7}$$: Set operations

Let $$A = \{ r,e,a,s,o,n,i,g\}, B = \{m,a,t,h,e,t,i,c,l\}$$ and $$C$$ = the set of vowels. Calculate:

1. $$A \cup B \cup C.$$
2. $$A \cap B.$$
3. $${C}^c$$.

## Exercise $$\PageIndex{8}$$: Prove or disprove

Given subsets $$A,B,C$$ of a universal set $$U$$, prove the statements that are true and give counter examples to disprove those that are false.

1. $$P(A \cup B) = P(A) \cup P(B).$$
2. $$P(A \cap B) = P(A) \cap P(B).$$
3. $$P(A^c)=(P(A))^c$$
4. $$P(A - B) = P(A) - P(B).$$

## Exercise $$\PageIndex{9}$$: Equal Sets

Consider the following sets:

$$A=\{x \in {\bf Z}| x= 2m, m \in {\bf Z}\}$$ and $$B=\{x \in {\bf Z}| x= 2(n-1), n \in {\bf Z}\}$$.

Are $$A$$ and $$B$$ equal? Justify your answer.

## Exercise $$\PageIndex{10}$$: Product of Sets

Let $$A=\{1,3,5\}$$, and
$$B =\{ a,b \}$$.

Then

1. Find $$A \times B$$ and $$B \times A$$.
2. Are $$A \times B$$ and $$B \times A$$ equal? Justify your answer.