Skip to main content
Mathematics LibreTexts

Test 1A

  • Page ID
    53586
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    These mock exams are provided to help you prepare for Term/Final tests. The best way to use these practice tests is to try the problems as if you were taking the test. Please don't look at the solution until you have attempted the question(s). Only reading through the answers or studying them, will typically not be helpful in preparing since it is too easy to convince yourself that you understand it.

    Mock Exam (Test 1)

    You can try timing yourself for 80 minutes.

    Exercise \(\PageIndex{1}\)

    Evaluate each of the following limits or explain why they do not exist.

    Exercise \(\PageIndex{1.1.1}\)

    \(\lim_{h\to 0} \displaystyle \frac{\displaystyle \frac{1}{4+h}-\displaystyle \frac{1}{4}}{h}\)

    Answer

    \(\frac{-1}{16}\)

    Solution

    \begin{align*}\lim_{h\to 0} \displaystyle \frac{\displaystyle \frac{1}{4+h}-\displaystyle \frac{1}{4}}{h} &= \lim_{h\to 0} \displaystyle \frac{1}{h} \left(\displaystyle \frac{1}{4+h}-\displaystyle \frac{1}{4} \right)\\&= \lim_{h\to 0} \displaystyle \frac{1}{h}\left(\displaystyle \frac{4-(4+h)}{4(4+h)}\right)\\&= \lim_{h\to 0} \displaystyle \frac{1}{h}\left(\displaystyle \frac{4-4-h}{4(4+h)}\right)\\&= \lim_{h\to 0} \displaystyle \frac{1}{h}\left(\displaystyle \frac{-h}{4(4+h)}\right)\\&= \lim_{h\to 0} \displaystyle \displaystyle \frac{-1}{4(4+h)}\\&= \lim_{h\to 0} \displaystyle \displaystyle \frac{-1}{4(4)}\\&= \displaystyle \displaystyle \frac{-1}{16}\end{align*}

    Exercise \(\PageIndex{1.2}\)

    \(\displaystyle \lim_{x \to 2} \frac{2x^2-x-6}{x-2}\)

    Answer

    \(7\)

    Solution

    First set \(x=2\), and we get \(\displaystyle\lim_{x \to 2} \frac{2x^2-x-6}{x-2}= \frac{2(2^2)-2-6}{2-2} \, \left[ \frac{0}{0} \right]\).

    Now, \(\displaystyle \lim_{x \to 2} \frac{2x^2-x-6}{x-2} = \displaystyle\lim_{x \to 2} \frac{(2x+3)(x-2)}{x-2}=\displaystyle\lim_{x \to 2} (2x+3)= 2(2)+3=7. \) 

    Exercise \(\PageIndex{1.3}\)

    \(\displaystyle \lim_{x\rightarrow 9}\frac{\sqrt{x}-3}{2x-18}\)

    Answer

    \( \displaystyle \frac{1 }{12}\)

    Solution

    \(\displaystyle \lim_{x\rightarrow 9}\frac{\sqrt{x}-3}{2x-18} = \frac{\sqrt{9}-3}{18-18} [\frac{0}{0}]\)

    \(=\displaystyle \lim_{x\rightarrow 9}\frac{(\sqrt{x}-3)(\sqrt{x}+3) }{(2x-18)(\sqrt{x}+3)}\)

    \(=\displaystyle \lim_{x\rightarrow 9}\frac{(x-9) }{2(x-9)(\sqrt{x}+3)}\)

    \(=\displaystyle \lim_{x\rightarrow 9}\frac{1 }{2(\sqrt{x}+3)}\)

    \(=\displaystyle \frac{1 }{2(\sqrt{9}+3)} = \displaystyle \frac{1 }{12}\\(\PageIndex{1.4}\)

    Exercise \(\PageIndex{2}\)

    Consider \(f(x) =\displaystyle \frac{2x+1}{x-1}.\) Use limits to find any horizontal and vertical asymptotes of this function.

    \(\displaystyle\lim_{x\rightarrow 2^+} f(x) \)

    \(\displaystyle \lim_{x\rightarrow 2^-} f(x)\)

    \(\displaystyle \lim_{x\rightarrow 1^+} f(x) \)

    \(\displaystyle \lim_{x\rightarrow 1^-} f(x)\)

    \(\displaystyle \lim_{x\rightarrow \infty} f(x)\)

    \(\displaystyle \lim_{x\rightarrow -\infty} f(x)\)

    Find any horizontal and vertical asymptotes of this function.

    Answer

    \(5,5,\infty,-infty,2,2,x=1,y=2\)

    Solution

    \(\displaystyle\lim_{x\rightarrow 2^+} f(x) =5\) \(\displaystyle \lim_{x\rightarrow 2^-} f(x)=5\) \(\displaystyle \lim_{x\rightarrow 1^+} f(x) =\infty\) \(\displaystyle \lim_{x\rightarrow 1^-} f(x)=-\infty\) \(\displaystyle \lim_{x\rightarrow \infty} f(x)=2\) \(\displaystyle \lim_{x\rightarrow -\infty} f(x)=2\) Horizontal and vertical asymptotes of this function are \(x=1\) and \(y=2\).

     

    Exercise \(\PageIndex{3}\)

    Use the Intermediate Value Theorem to show that the equation

    \(\displaystyle 4x^5-6x^3+10x^3-5=0\) has at least one solution in the interval \([0,1]\)

    Answer

    Let \(f(x)= 4x^5-6x^3+10x^3-5\). Then \(f(x)\) is continuous and \(f(0)=-5\) and \(f(1)=3\).

    Since \(-5<0<3\),by the Intermediate Value Theorem there exist at least one real number \(k\) in the interval \([0,1]\) such that \(f(k)=0\)

    Exercise \(\PageIndex{4}\)

    a) Use the definition of the derivative to find \(f'(x)\) for

    \[\displaystyle{f(x)=\frac{1}{3x+1}}\]

    Hint:

    The definition of the derivative \(f'(x)= \lim_{h \rightarrow 0} \displaystyle\frac{f(x+h)-f(x)}{h}\).

    Answer

    \(\displaystyle{f(x)=\frac{-3}{(3x+1)^2}}\).

    Solution:

    \(f'(x)= \lim_{h \rightarrow 0} \displaystyle\frac{f(x+h)-f(x)}{h}\).

    b) Find the slope of the tangent line to the graph at the point \(x=1.\)

    Answer

    \(\displaystyle{f(x)=\frac{-3}{16}}\).

    Exercise \(\PageIndex{5}\)

    An object has swimmed the distance \(s(t)= \frac{t^2}{t^2+1}\) meters in \(t\) seconds. Determine its velocity when \(t=3\).

    Answer

    \(\frac{3}{50}\)

     


    This page titled Test 1A is shared under a not declared license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?